
1

R 超入門

櫻井彰人

本日の目標

• R言語の概要を知る。

– 説明を聞く

– 書いてみる

– 実行させてみる

– 説明書を見る

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存

前書: プログラムは何に使うか？

• アイデアが正しいかどうかを調べる

– 数式

– データ間の関係

• グラフを書く

• 動かす

• 記録する

• 見せる

Rをつかう

• インストール

– 参考：RjpWiki→Rのインストール

• 起動

– デスクトップのアイコンをダブルクリック

– スタート→すべてのプログラム→R

• 終了

– 右上の✕ボタン→質問に「いいえ」

Rのウィンドウ

ウィンドウ→縦に並べて表示

ウィンドウ→カスケードパターン



2

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存

ベクトル

• R で扱えるデータ構造の基本要素にベクトル
がある

• ベクトルは、ご存じのように、数値や文字列の
列である。:
– ("altec", "sony", "jbl")

– (1, 5.2, 10,  7,  2, 21)

– (3)

• 最後の例は、長さ１のベクトルである

http://www.hulinks.co.jp/software/voxler/images/WebVectorPlot.png

ベクトルを「作る」には

> c(1,5,10, 7, 2, 1)
[1]  1  5 10  7  2  1

> c('altec', 'sony', 'jbl')
[1] "altec" "sony" "jbl" 

文字列は、その左右を、ダブルクォート(")かシングルクォート(')で囲む

長さ1のベクトルを作るときは、c() を書かなくてよい
> 3
[1] 3

メソッドの名称 メソッドの引数

メソッド実行の結果

練習問題:
1) 次の要素を持つベクトルを作りなさい
45,5,12,10

2) 次のコマンドの結果、何が起こるか？
c(1:100)

(注) ベクトルは、R において極めて基本的なデータ構造である。
R 中の殆どすべてのものは、何らかの意味でベクトルである。

勿論、一般には高次元のベクトルである、すなわち、ベクトル
のベクトルである

代入

> 4+5          # 4 と 5 の加算
[1] 9
> a<-4         # 変数 a に 4 を代入
> b<-5         # 変数 b に 5 を代入
> a    # 変数 a の値を印字
[1] 4
> b
[1] 5
> a+b          # 変数の加算 a+b (4+5)
[1] 9          # 正しい！

irb とそっくり

irb との違いに注意

#の右は、すべてコメント

もっとも、＝も使えます

ベクトル要素の読み出し

ベクトル要素を取り出すには次のようにする。

a[5] # 第5要素。先頭は第1要素！

次のようにしたら、どうなる？

a <- c(1,5,10,15,20) 

a[c(1,3,5)]

a[1:4]

a[4:1]

Rubyと異なる



3

練習

• ベクトルを反転させる（ベクトル要素の並びを
左右逆転する）、少なくても２通りの方法を考
えて（探して）下さい。

a <- c(1,5,10,15,20) # ベクトルの定義
# で？

即レポ1-1

ベクトルへの加算

• V1 に 1から20の整数からなる配列を代入後

としたらどうなるか？

• 次のものを試してみよう。そして、その規則を推測し
てください。

> v1 + 10

> a <- c(10,20,30,40)
> b <- c(1,2,3,4)
> c <- c(1.1,2.2)
> d <- c(1,2,3)
> a+b
> a+c
> a+d

ベクトルに関する関数

• ベクトルに関する関数はいくつかある。名称
は論理的につけられている。例えば、

– length(): ベクトルの要素数

• そこで、練習問題

– 要素の値が、1から10000までの整数である配列
を作れ（ a:b 構文を用いる)

– 要素のすべての和（sum）を求めよ

– 要素の平均値（mean）を求めよ

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存

識別子と名前

• 識別子（identifier）は、

• つまり、文字、数字、ピリオド、下線のいずれからな
り、先頭は文字（少し例外あり）。

• 名前（names）には、もっと自由な文字列が使えるが、
その値の読書きには get と assign を使う

Identifiers consist of a sequence of letters, digits, the period (‘.’) and the 
underscore. They must not start with a digit nor underscore, nor with a period 
followed by a digit. 

ヘルプ

• R には関数が多すぎる（それがメリットなのだが）。そのため、
ヘルプが結構充実している。

• その使い方は

?関数名 # または

help(関数名) # または

?"関数名"    # または

help("関数名")   # または

help.search(何か) # ‘fuzzy’ 検索

練習問題

• 関数 sample() と sort() のヘルプを調べ、1から10000を要
素とするベクトルに（結果を予想して）適用しなさい

• ところで、RSiteSearch("sample") とすると何が起こるか？

即レポ1-2



4

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存

ベクトルのプロット

• まずプロットするデータを作る。

d <- rnorm(100)  # 100 個の正規乱数

• 次のを試してみよう:

plot(d)

plot(d, type="l")

barplot(d)

hist(d)

• 何が図示されているか、確認してください。

次ページのようにするには、plot の前に、一度、 par( mfrow=c(2,2) ) として下さい

プロットする plot も関数である

0 20 40 60 80 100

-2
-1

0
1

2

Index

d

0 20 40 60 80 100

-2
-1

0
1

2

Index

d

-2
-1

0
1

2
3

Histogram of dat

dat

F
re

qu
en

cy

-3 -1 0 1 2 3 4

0
5

15
25

35

プロット・オプション

• 次のようにオプションが指定できる

plot(あるベクトル, col="blue")

基本的なオプションとしては、次のようなものがある。複数個指
定が可能

type= "l", "b"
col= "pink"
main= "important plot"

構文規則では、これらのオプションは、plot() の引数である

要は、関数の引数！

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存

引数について

関数は、大抵の場合、何らかの入力が必要となる。

例えば、 plot(d). ここで 'd' は名前なし（無名）引数であり, 
これがうまくいくのは, plot() では, 第一引数が x 値（「y値」の書

き間違いではない）であると仮定しているからである。

plot() の場合は, 名前付き引数も使える。この場合は、
plot(x=d) とすればよい（plot(d) と同じ結果）。

「x=」のように書く引数を名前付き引数という（xが名前である）。

引数の個数が多いときには、多くの引数が（誤りを避けたり、
default値を用いるようにするため）名前付き引数となってい
る。

plot( あるベクトル, col="blue", type="s" )



5

名前なし引数は順序が大切

• 名前なし引数は、その順序で、意味が決まっ
ている（勿論、関数ごとに）

– "普通" ですね。

• 次の違いを知ろう
a <- rnorm(100)
b <- rnorm(100)*2
plot(a,b)
plot(b,a)
plot(x=b, y=a)

-2 -1 0 1 2

-4
0

2
4

6

a

b

-4 -2 0 2 4 6

-2
-1

0
1

2

b

a

-4 -2 0 2 4 6

-2
-1

0
1

2

b

a

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存

plot()用パラメータ

• 引き続く plot() に共通なパラメータを, par() で設定
することができる. 非常にたくさんのパラメータがあ
る. 試しに,  ?par としてみてください。

• 例えば：
mfrow() と mfcol(); 一ページ（ウィンドウ一個）に複
数のプロットするためのもの。配置方向と個数を示
す。

– 長さ2のベクトルを値とする。それにより一ページ中の、プ
ロットするセルの個数が決まる（次頁）

> par( mfrow=c(3,1) )
> plot (a,b)
> plot (b,a)
> plot(x=a, y=b)
> 

> par( mfrow=c(2,2) )
> plot (a,b)
> plot (b,a)
> plot(x=a, y=b)
> 

-2 -1 0 1 2

-4
0

2
4

6

a

b

-4 -2 0 2 4 6

-2
-1

0
1

2

b

a

-2 -1 0 1 2

-4
0

2
4

6

a

b

-2 -1 0 1 2

-4
-2

0
2

4
6

a

b
-4 -2 0 2 4 6

-2
-1

0
1

2

b

a

-2 -1 0 1 2

-4
-2

0
2

4
6

a

b

> par( mfcol=c(3,1) )
> plot (a,b)
> plot (b,a)
> plot(x=a, y=b)
> 

> par( mfcol=c(2,2) )
> plot (a,b)
> plot (b,a)
> plot(x=a, y=b)
> 

-2 -1 0 1 2

-4
0

2
4

6

a

b

-4 -2 0 2 4 6

-2
-1

0
1

2

b

a

-2 -1 0 1 2

-4
0

2
4

6

a

b

-2 -1 0 1 2

-4
-2

0
2

4
6

a

b

-4 -2 0 2 4 6

-2
-1

0
1

2

b

a

-2 -1 0 1 2

-4
-2

0
2

4
6

a

b



6

課題

• 一行に３個のグラフをプロットしてください

即レポ1-3

グラフの重ね書き

• 一つのグラフの上に他のグラフを重ねたい（２
個や3個のグラフを重ねがきしたい）場合には、
例えば、 lines() や points() を使えばよい。

> plot(b, type="l", col="blue")
> lines(a, col="red")
> 

0 20 40 60 80 100

-4
-2

0
2

4
6

Index

b

a<-rnorm(100)
b<-rnorm(100)*2

プロットの重ね書き

• コマンドによっては、add=T をパラメータとす
ることで、重ねがきができます。

> plot( (0:20)*(pi/10),cos( (0:20)*(pi/10) ) )
> curve(cos,0,2*pi,col=2, add=T)
> 

0 1 2 3 4 5 6

-1
.0

-0
.5

0
.0

0
.5

1
.0

(0:20) * (pi/10)

co
s(

(0
:2

0
) 

* 
(p

i/1
0

))

軸の上下限

• x軸、ｙ軸の上下限を変更するには、

x軸の上下限: xlim = c( 開始点, 終点)
y軸の上下限: ylim = c( 開始点, 終点)

例
plot(a, type="l", col="blue")

0 20 40 60 80 100

-2
-1

0
1

2

Index

a

plot(a, type="l", col="blue", ylim=c(-5,5))

0 20 40 60 80 100

-4
-2

0
2

4

Index

a

a<-rnorm(100)
b<-rnorm(100)*2

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存



7

関数の定義

• 何度も（そっくりなことを）行う場合、それを関
数として定義しておくのが妥当

例: 引数を x とするとき、x2+x+1 を返す関数

my_f<- function(x) {
return(x^2 + x + 1)

}

関数名: 適宜 関数であることを宣言

引数. 関数の定義本体で使用する

{} で括られた部分が、関数の本体の定義

値を、関数の値とし、この関数の計算を終了する

http://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Function_machine2.svg/159px-Function_machine2.svg.png

関数の使用例

> myF <- function(x) {
+   return(x^2 + x + 1)
+ }
> myF(10)
[1] 111
> myF(20)
[1] 421
> 

myF <- function(x) {
return(x^2 + x + 1)

}
myF(10)
myF(20)

練習問題

• x3+x2+x+1 を計算する関数を作りなさい。正しいこ
とを検証しなさい

• x が与えられたとき、1+2+…+x を計算する関数を
作りなさい。正しいことを検証しなさい。

• x と y が与えられたとき、x+(x+1)+…+y を計算する
関数を作りなさい。正しいことを検証しなさい

即レポ1-4

関数の値（戻り値、返り値）

• R では、関数本体内で、最後に実行した式の
結果が、関数の値として、戻される

• ただし、return() という関数を使うと、return 
関数引数の演算結果を値（return value, 戻り
値、返り値）として、呼び出し元に戻る

「戻り値」の例

> myF <- function(x){
+   x^2 + x + 1
+ }
> myF(10)
[1] 111
> myF(20)
[1] 421
> 

> myF <- function(x){
+   v <- x^2 + x + 1
+   return( v )
+ }
> myF(10)
[1] 111
> myF(20)
[1] 421
> 

myF <- function(x) {
return(x^2 + x + 1)

}
myF(10)
myF(20)

myF <- function(x) {
v <- x^2 + x + 1
return( v )

}
myF(10)
myF(20)

引数の個数は重要

> myF <- function(x,y){
+   sum( x:y )
+ }
> myF(10)
以下にエラー x:y :  'y'が見つかりません

> myF(1,10)
[1] 55
> myF(10,1)
[1] 55
> 

myF <- function(x,y){
sum( x:y )

}
myF(10)
myF(20)



8

引数の個数に柔軟対処するには

• 仮引数に名前をつけることができ、デフォー
ルト値が設定できる

> myF <- function(x=1,y=10){
+   sum( x:y )
+ }
> myF(9)
[1] 19
> myF(,2)
[1] 3
> myF(x=9)
[1] 19
> myF(y=2)
[1] 3
> myF(y=2,x=9)
[1] 44
> 

myF <- function(x=1,y=10){
sum( x:y )

}
myF(9)
myF(,2)
myF(x=9)
myF(y=2)
myF(y=2,x=9)

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存

繰返し

• 同じ処理（平均値の計算）を複数個のデータ
（1月の売上げ、2月の売上げ、、、、）に対し
適用したいことはしばしばある。

• このような繰返し処理を行わせる道具が loop 
であり、iterator である。

繰返しの例

> myF <- function( x ) {
+   for(i in x){
+     print(i)
+   }
+ }
> myF(1:3)
[1] 1
[1] 2
[1] 3
> myF( rnorm(4) )
[1] 0.7225764
[1] -1.779531
[1] 1.212787
[1] -0.6368527
> 

勿論、関数の中でも、繰返しは使
えます。

> for(i in 5:8){
+   print(i)
+ }
[1] 5
[1] 6
[1] 7
[1] 8
> 

for(i in 5:8){
print(i)

}

myF <- function( x ) {
for(i in x){

print(i)
}

}

繰返しの例（続）

• ベクトル（配列）に対する繰返しは、Rubyと同様に、要素に対
する繰返しと、要素番号（index）に対する繰返しとがある。

> b <- c(2,7,1,8)
> for(e in b){
+   print( e )
+ }
[1] 2
[1] 7
[1] 1
[1] 8
> 

> b <- c(2,7,1,8)
> for(i in 1:length(b)){
+   print( b[i] )
+ }
[1] 2
[1] 7
[1] 1
[1] 8
> 

1 からベクトルの長
さまで。 Rubyでは 0 
から長さ1 である。

b <- c(2,7,1,8)
for(e in b){

print( e )
} 

b <- c(2,7,1,8)
for(i in 1:length(b)){

print( b[i] )
}

目次

• 前書
• 基本データ型 – ベクトル

– 作る、代入、読み出し、加算、関数

• 識別子、ヘルプ
• プロット
• 関数の引数 – プロットを例にして
• 再びプロット
• 関数について – 少し丁寧に
• 繰り返しについて
• 補足: 結果の保存



9

グラフのコピー

• グラフがあるウィンドウ上で、右クリックし、
「メタファイルファイルにコピー」「ビットマッ
プにコピー」

R-console のコピー

• 編集 → 全て選択→ コピー

予め、編集→ コンソール画面を消去 (Ctrl+l) し
ておき、必要なものを改めて実行してから、上記
操作を行う。

（勿論、コピーしてから編集するのもOK）

最後に

• R は、プログラミング言語である。

• 統計計算用に、いろいろな道具が用意されて
いる
– 具体的な内容は、順次

• 機械学習の道具もいろいろあり
– これも、講義の進展に従い、順次

• Rを使って、機械学習のアルゴリズムを試して
みよう！

付録

要約統計量（の例）

• hist(): ヒストグラム表示。

• mean(): 平均値

• median(): メディアン

• summary(): クォンタイル他

Histogram of a

a

F
re

q
u

e
n

cy
-3 -2 -1 0 1 2

0
5

1
0

1
5

2
0

> summary(a)
Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 

-2.53100 -0.41550  0.07624  0.13130  0.71530  2.05200 

経験度数分布

• 経験度数分布（経験相対頻
度分布、累積度数分布、経
験分布） ecdf (empirical 
cumulative distribution 
function) は、次のようにして
表示することができる。

> ecdf(a)
Empirical CDF 
Call: ecdf(a)
x[1:100] = -2.5311, -2.1125, -1.6676,  ..., 2.0393, 2.0521

> plot(ecdf(a))

-3 -2 -1 0 1 2

0.
0

0
.2

0
.4

0.
6

0
.8

1
.0

ecdf(a)

x

F
n(

x)

a<-rnorm(100)
b<-rnorm(100)*2



10

経験度数分布（続）

• データ数を減らして、見やすくしてみました。

> a1<-rnorm(10)
> a1 <- c(a1,5,6,10)
> plot(ecdf(a1))
> 

0 5 10

0.
0

0
.2

0.
4

0
.6

0
.8

1.
0

ecdf(a1)

x

F
n(

x)

a<-rnorm(100)
b<-rnorm(100)*2

箱型図(箱ひげ図) 

• boxplot です > a1<-rnorm(10)
> a2 <- c(a1,5,6,10)
> boxplot(a1)
> rug(a1,side=2)
> boxplot(a2)
> rug(a2,side=2)

-2
-1

0
1

2

-2
0

2
4

6
8

1
0

Q1: 第一四分位

Q3: 第三四分位

IQR=Q3-Q1:         
四分位範囲
interquantile range

Q3+1.5IQR以下
の最大点

外れ値 outlier


