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5. ナイーブなベイズ法（2）
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本日

• Naïve Bayes 分類器で（というより他の分類

器でも）、実は問題になる、些細なしかし極め
て重要な点

– 「度数=0」問題

– 欠測値問題

– 連続値の取扱い（これは、離散値を対象とする分
類器で、一般的な問題）
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簡単な例で: 
天気とテニス

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

Tom Mitchell の Machine Learning という書籍から. よく使われます

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

このとき、下記の（未知、つまり学習
データにない）条件では、Play=Yes 
であった（あろう）かPlay=Noであっ
た（あろう）かを推定する。

（テニスを行う） Play=Yes と（テニスを
行わない） Play=No の2つのクラスが
ある

再掲
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（回りくどいが）データをクラスに分割

Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

再掲
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データの数を数えて、推定

Sunny 2 Hot 2 High 3 False 6

Overcast 4 Mild 4 Normal 6 True 3

Rainy 3 Cool 3

合計 9 合計 9 合計 9 合計 9

Sunny 2/9 Hot 2/9 High 3/9 False 6/9

Overcast 4/9 Mild 4/9 Normal 6/9 True 3/9

Rainy 3/9 Cool 3/9

確率の
推定

度数

A1=Outlook A2=Temperature A3=Humidity A4=Windy Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

Sunny 3 Hot 2 High 4 False 2

Overcast 0 Mild 2 Normal 1 True 3

Rainy 2 Cool 1

合計 5 合計 5 合計 5 合計 5

Sunny 3/5 Hot 2/5 High 4/5 False 2/5

Overcast 0/5 Mild 2/5 Normal 1/5 True 3/5

Rainy 2/5 Cool 1/5

A3=Humidity A4=Windy

確率の
推定

度数

A1=Outlook A2=Temperature

再掲
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2

ポイント

• クラス（出力値）ごとに数える。
– 条件付き確率（すなわち、クラス="テニスに行く"とき

に、、、、である確率）を考えることになる

• 属性ごとに、各属性値の発生回数を数える
– 「属性ごとに」というのが "naïve" Bayes
– 発生回数は、各属性値の発生確率を推定するため

– 二項分布・多項分布を考えている。

)()|()(

)()()|,,(

)()()|(

)(),()|(

1

1

xpmapmp

xpmpmaap

xpmpmxp

xpmxpxmp

n

i
jij

jjn

jj

jj














7

一つの表に纏めておこう

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

m=PlayA1=Outlook A2=Temperature A3=Humidity A4=Windy

Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

p(m) に関する説明を省きましたが（忘れた、が
正しいのだが）、それは、これ

再掲
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推論をしよう

p(Play=yes | x )   
= p(Outlook=Sunny | Play=yes) 

* p(Temp=Cool | Play=yes) 
* p(Humidity=High | Play=yes) 
* p(Windy=True | Play=yes) 
* p(Play=yes)  / p(x) 

= (2/9) * (3/9) * (3/9) * (3/9) 
*(9/14) / p(x) 

= 0.0053 / p(x) 

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

未知の x
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p(Play=no | x )   
= p(Outlook=Sunny | Play=no) 

* p(Temp=Cool | Play=no) 
* p(Humidity=High | Play=no) 
* p(Windy=True | Play=no) 
* p(Play=no)  / p(x) 

= (3/5) * (1/5) * (4/5) * (3/5)  
*(5/14) / p(x)

= 0.0206 / p(x)

注: 1/p(x) は気にしなくてよいことが分る; 比較すべき相手すべてに共通だから. 

言い換えれば、 p(Play=yes | x ) < p(Play=no | x ) 
すなわち、「テニスは行わなかった（行わないだろう）」

再掲ではない

付け加
えました
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推論をしよう

p(Play=yes | x )   
= p(Outlook=Overcast | Play=yes) 

* p(Temp=Cool | Play=yes) 
* p(Humidity=High | Play=yes) 
* p(Windy=True | Play=yes) 
* p(Play=yes)  / p(x) 

= (4/9) * (3/9) * (3/9) * (3/9) 
*(9/14) / p(x) 

= 0.0106 / p(x) 

Outlook Temp. Humidity Windy Play

Overcast Cool High True ?

未知の x

p(Play=no | x )   
= p(Outlook=Overcast | Play=no) 

* p(Temp=Cool | Play=no) 
* p(Humidity=High | Play=no) 
* p(Windy=True | Play=no) 
* p(Play=no)  / p(x) 

= (0/5) * (1/5) * (4/5) * (3/5)  
*(5/14) / p(x)

= 0.0000 / p(x)

注: 1/p(x) は気にしなくてよいことが分る; 比較すべき相手すべてに共通だから. 

言い換えれば、 p(Play=yes | x ) > p(Play=no | x ) 
すなわち、「テニスは行った（行うだろう）」

再掲ではない

これでいいのか？
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簡単な例で: 
天気とテニス

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Mild High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Mild Normal False Yes

Rainy Mild High True No

Tom Mitchell の Machine Learning という書籍から. よく使われます

Outlook Temp. Humidity Windy Play

Overcast Hot High True ?

このとき、下記の（未知、つまり学習
データにない）条件では、Play=Yes 
であった（あろう）かPlay=Noであっ
た（あろう）かを推定する。

（テニスを行う） Play=Yes と（テニスを
行わない） Play=No の2つのクラスが
ある

再掲ではない

仮に
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データの数を数えて、推定

Sunny 2 Hot 0 High 3 False 6

Overcast 4 Mild 6 Normal 6 True 3

Rainy 3 Cool 3

合計 9 合計 9 合計 9 合計 9

Sunny 2/9 Hot 0/9 High 3/9 False 6/9

Overcast 4/9 Mild 6/9 Normal 6/9 True 3/9

Rainy 3/9 Cool 3/9

A3=Humidity A4=Windy

確率の
推定

度数

A1=Outlook A2=Temperature Outlook Temp. Humidity Windy Play

Overcast Mild High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Mild Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

Sunny 3 Hot 2 High 4 False 2

Overcast 0 Mild 2 Normal 1 True 3

Rainy 2 Cool 1

合計 5 合計 5 合計 5 合計 5

Sunny 3/5 Hot 2/5 High 4/5 False 2/5

Overcast 0/5 Mild 2/5 Normal 1/5 True 3/5

Rainy 2/5 Cool 1/5

A3=Humidity A4=Windy

確率の
推定

度数

A1=Outlook A2=Temperature

再掲ではない
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一つの表に纏めておこう

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 0 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 6 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 0/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 6/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

m=PlayA1=Outlook A2=Temperature A3=Humidity A4=Windy

Outlook Temp. Humidity Windy Play

Overcast Mild High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Mild Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

p(m) に関する説明を省きましたが（忘れた、が
正しいのだが）、それは、これ

再掲ではない
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推論をしよう

p(Play=yes | x )   
= p(Outlook=Overcast | Play=yes) 

* p(Temp=Hot | Play=yes) 
* p(Humidity=High | Play=yes) 
* p(Windy=True | Play=yes) 
* p(Play=yes)  / p(x) 

= (4/9) * (0/9) * (3/9) * (3/9) 
*(9/14) / p(x) 

= 0.0000 / p(x) 

Outlook Temp. Humidity Windy Play

Overcast Hot High True ?

未知の x

p(Play=no | x )   
= p(Outlook=Overcast | Play=no) 

* p(Temp=Hot | Play=no) 
* p(Humidity=High | Play=no) 
* p(Windy=True | Play=no) 
* p(Play=no)  / p(x) 

= (0/5) * (2/5) * (4/5) * (3/5)  
*(5/14) / p(x)

= 0.0000 / p(x)

注: 1/p(x) は気にしなくてよいことが分る; 比較すべき相手すべてに共通だから. 

言い換えれば、 p(Play=yes | x ) = p(Play=no | x ) 
すなわち、どっちともいえない？？？

再掲ではない

これでいいのか？

再掲でもない
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頻度=0 問題
• もしあるクラス値に対してある属性値が

一度も起こらなかったらどうなるか (e.g. 
“Play=No” のとき “Outlook = 
Overcast” )?
– 確率 P(Outlook=Overcast | Play=no)

は 0 !!
• 従って, 事後確率は 0 !! 

– 他の値がどんなに “これは起こりやす
い!” と言っていても, だ.

• 治療方法: 
– すべての クラス値-属性値 の組に頻

度 1 を加える (Laplace correction と
いう);

– 分母（正確ではない. 右を参照）には k
(可能な属性値の個数) を加える (勿論, 
これと合せて Laplace correctionとい
う). 

P(Play=yes | E)  

= P(Outlook=Sunny | Play=yes) *

P(Temp=Cool | Play=yes) *

P(Humidity=High | Play=yes) *

P(Windy=True | Play=yes) *

P(play=yes) / P(E)  

= (2/9) * (3/9) * (3/9) * (3/9) *(9/14) / P(E) 

= 0.0053 / P(E)

ではなく:

= ((2+1)/(9+3)) * ((3+1)/(9+3)) * 
((3+1)/(9+2)) * ((3+1)/(9+2)) *(9/14) / 
P(E) 

= 0.007 / P(E)

‘Outlook’ のとりう
る値の個数

‘Windy’ のとりうる
値の個数

Laplace correction これ１枚

目次
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二項分布のパラメータ推定

• 画鋲を放り投げる（toss）と, 2つのうちのいずれかの状態
で床に落ちる: Head または Tail

• θ で (未知の) 確率 P (H ) をあらわす

推定課題:

一連の toss の結果 D=x[1],x[2],…,x[M] をもとに, 確率
P(H)= θ と P(T)=1- θ を推定したい

以下、脱線 or 補足
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尤度関数

• 特定の のよさはどう計るか?
「その のもとで、観測データが生成されたとする」仮説の
ありそう度合い（likelihood; 尤度）で計ればよい

• 例えば, 列 H,T,T,H,H に対しては :


m

mxPDPDL )|][()|():( 

  )1()1():( DL

Dは発生してしまった

事象。その確率なんて
考えられるのか？
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最尤推定量は

• 最尤推定の原理 :

• 今の例では : 

尤度関数を最大にするパラメータ値をとれ

TH

H

NN

N


̂

これが最適だと考えるのが普通だが…
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最尤推定量でいいか？

• ２値ではなく、多値であったら、それもかなり多かったら: 
– 同じ原理が適用できる. でも、観測されない値がでるであろう. それは

0 と考えてよいか？ いや、たまたま、出現しなかっただけという可能
性が結構ある …

• 例えば、変数Xは、値 x1, x2,…,x20 を等確率で取る。サン
プルは30個しかない。となったら、実現していない変数値は、
いくつもありそう。例えば、Rで

> set.seed(100)
> x <- sample(1:20, 30, replace=T)
> table(x)
x 
2  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 
1  2  1  3  1  4  1  2  4  1  1  2  2  2  1  2 
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では、どうしたらよいか？

• Laplace correction を考える

• 「パラメータも分布する」と考える
– ベイズ的考え方

– つまり、P(D|) ではなく、 P(D|)P() を考える

– これは、ベイズの定理を用いると

– となるゆえ、最も確率の高い  を推定値とすればよい。

– このとき、NH が0であっても、 =0 は推定値とはならない。

ܲ ܦ|ߠ ൌ
ܲ ߠ|ܦ ܲሺߠሻ

ܲ ܦ

ܲ |ߠ ுܰ, ்ܰ	 ൌ
ேಹߠ 1 െ ߠ ே೅ܲሺߠሻ

ܲ ܦ
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Laplace correction 前後

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 0 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 6 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 0/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 6/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

m=PlayA1=Outlook A2=Temperature A3=Humidity A4=Windy

Yes No Yes No Yes No Yes No Yes No

Sunny 3 4 Hot 1 3 High 4 5 False 7 3 10 6

Overcast 5 1 Mild 7 3 Normal 7 2 True 4 4

Rainy 4 3 Cool 4 2

Sunny 3/12 4/8 Hot 1/12 3/8 High 4/11 5/7 False 7/11 3/7 9/14 5/14

Overcast 5/12 1/8 Mild 7/12 3/8 Normal 7/11 2/7 True 4/11 4/7

Rainy 4/12 3/8 Cool 4/12 2/8

m=PlayA1=Outlook A2=Temperature A3=Humidity A4=Windy

改変後の値です
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Sub 目次: Laplace correction 

• Laplace の「連」の法則
– コイン投げで、表が続けて10回出たら、次に表が出る確率はいくらか？

• 答え 11/12

– 最尤推定とは（一応）別の考え方

• Laplace correction: 
– 生起回数 0 の現象があるときの、生起確率の推定

• そうしたことを想定して、0 でない事象に対しても、生起確率の推定の仕方
を変える

– Laplaceの「連」の法則の結果と同じことを, 最尤法の枠組みで得る方
法

• Laplace correction の拡張

ちょっとわき道。しかし、これも重要

次の車もアンティーク？

Laplace's Law of Succession

• ラプラスの「連の法則」とでも訳しましょうか。

• 同じ事象がn回連続して起こった場合に、その事象
がn+1回目も起こる確率は、(n+1)/(n+2) である。

• この定理の不思議さ：
– 普通に、コイン投げを考えよう。

– 表ばかり10回続いた。表が出る確率は最尤推定すると
10/10 = 1 である。従って、次に表となる確率は1である。

• まぁ、10回も続けば、いかさまコインだと思うよね。

• しかし、コインであれば、裏がないということはなかろう

– ラプラスによれば、11/12
• いかさまには変わりはない。

最尤推定 vs Laplace

• 10回などといわずに、2回にしてみよう。すなわち、表が2回続いたとしよ
う。

• 最尤推定なら、表が出る確率は 2/2=1ゆえ、次に表の出る確率は1。

• Laplaceによれば、3/4。

• どっちが正しい？

• では、表が１回続いた（続いてない？）

• 最尤推定なら、表の出る確率は1/1=1ゆえ、次に表の出る確率は1。

• Laplaceによれば、2/3。

• さて、どちらが正しそうか？
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証明

• ここでは、ベルヌーイ試行を考える。

• ただしコインはN+1種類あり（表の出る確率は異なる）、どのコインである
かは、出題者は知っているが回答者は知らないとする。

• i番目のコインの表の出る確率は i/N (i=0,..,N) とする。

• 出題者は、 N+1個のコインを等確率で選び、一回選べば、あとはそれを
使い続けるとする。

• n回連続して表が出たときに、 n+1回目も表が出る確率を求めたい。

• コインiを選んだという条件下で、n回連続して表が出る確率は (i/N)n であ
る。従って、 n回連続して表が出る確率は (1/(N+1))i=0

N(i/N)n これを FN,n
と表す。

• n+1回連続して表が出る確率は FN,n+1 =(1/(N+1))i=0
N(i/N)n+1 である

• 従って、求める確率は FN,n+1 / FN,n である（式は複雑）。そこで次頁。
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証明（続）

• N の極限を考えよう。

– これは、コインの表が出る確率が、[0,1] 上の一様分布に従うことを意味する。

• FN,n =(1/(N+1))i=0
N(i/N)n  0

1 xn dx =1/(n+1)

• 従って、求める確率は、 N のとき、 FN,n+1/FN,n  F,n+1/F,n = 
(n+1)/(n+2)

• つまり、より正確に述べれば、Laplace's law of succession は、（coin 
tossingを例にすれば）出題者は、表が出る確率を一様分布に従ってラン

ダムに決め、それを用いてcoin tossをする、一方回答者は、表が出る確

率を知らないで（しかし、一様分布に従っていることは知っている）、 n回

連続して表が出たときに、 n+1回目も表が出る確率を求めるという状況

において、その確率は、 (n+1)/(n+2) であると主張している。

29

Laplace correction

• これは、先ほどの問題で、最尤法を用いてより直感に合う結
果を得る方法でもある。

• 再び最尤推定で考えよう。

• 最初からn回続けて表が出れば、表が出る確率の最尤推定
量は n/n = 1. 

• しかし、これはおかしい。裏が出る確率が0というのはありえ

ない。仮に、回答者が見る前に、表・裏一回ずつ出たものと
してみよう（これが Laplace correction）。

• そうすると、全部で n+2回試行し、n+1回表が出たことになる
ので、表が出る確率の最尤推定量は、 (n+1)/(n+2)

• Laplace's law of succession の結果とぴったり合う！

Laplace smoothing とも言います
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パラメータの事前分布
• 最尤推定ではなく、事後確率分布によるパラメータの期待値を推定値と

してみよう。すなわち、表が出る確率 p を

p = 0
1 p P( p | n回表 ) dp

で推定したい。

• この推定を行うには、パラメータ p の事前分布を知る必要がある。仮に、

[0,1]上の一様分布だと考えよう。そうすると、

p = 0
1 p P(n回表 | p) P(p)/P(n回表) dp

= 0
1 pn+1 / (0

1 pn dp) dp

= (n+1)/(n+2)

• これはLaplace's law of successionの結果に一致する！

• すなわち、 Laplace's law of succession の結果は（Laplace correctionの結

果は）、パラメータの事前分布を一様分布と仮定し、事後分布によるパラ

メータの期待値を推定値とすることに相当する！

ではなく  にしたいので
すが、できませんでした。

P(n回表)
= 0

1
P(n回表 | p)P(p)dp

= 0
1 pn dp

Bayesの定理使用

Bayesの定理による

先ほどの Laplace's law of succession の証明と同じことを示しているだけ。

パラメータの事前分布（続）

• 一様分布では気に食わない？

– 誰でもそう思う。

• では、ベータ分布 f(x;,)=x1(1x)1/B(,) を考えよう。なおf(x;1,1)が
一様分布である。

– なぜベータ分布か？って？ 二項分布の双対分布だから。

– なぜ双対分布か？って？ そうでないと計算ができないから、、、、

• このとき、事後分布によるパラメータの期待値を推定値とすると、その値
は、 (n+)/(n++) となる

• これをLaplace correction の拡張として用いることができる。 (n+1)/(n+2) 
の代わりに (n+1/2)/(n+1) や(n+1/3)/(n+2/3) などを用いる方法となる。

• もっとも、そうなると、どれを使ったらよいのだろうか？という迷いが生ま
れる

– 選択肢が多いと困ることもある

• 実は、（理論的な）答えは、ない

マーケティングでよく知られた話（とはい
え、議論があるので注意のこと）

Iyengar SS, Lepper MR. When choice is demotivating: can one desire too 
much of a good thing? J Pers Soc Psychol. 2000 Dec;79(6):995-1006.
Scheibehenne, B., Greifeneder, R. & Todd, P. M. (2009). What moderates the 
too-much-choice effect? Psychology & Marketing, 26, 229-253. 

Laplace correction の拡張

• Laplace's law of succession において、 (n+1)/(n+2) 
の代わりに (n+)/(n++) を用いる。例えば、
(n+1/2)/(n+1) や(n+1/3)/(n+2/3) などを用いる。

• もっとも、どれがよいかは、統計的にはいえない。

• これは、パラメータ分布の事前分布として、ベータ分
布 f(x;,)=x1(1x)1/B(,) を考えたことに相当
する。

– f(x;1,1)が一様分布なので、これは 基本Laplace 
correction の拡張といえる。
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補足: スムージング

• 確率モデルの推定において、訓練データに出現しない事象に対し
て微小な確率値を割り当てること。平滑化とも呼ばれる。

• 自然言語処理では、単語や文字 n 個の連なり（n-gram）の出現頻
度をよく用いる。n が少し大きくなると、出現しない単語列・文字列
が出てくる。それらを出現頻度0とするといろいろまずいことが起こ
る。そこで、様々なスムージング法が提案されてきた。
– Laplaceスムージング（加算スムージング）
– 線形補間法(Interpolation)
– グッドチューリング
– カッツ・スムージング
– チャーチ・ゲイル・スムージング
– ウィトン・ベル・スムージング
– Kneser-Neyスムージング
– ….
– 階層的Pitman-Yor言語モデル

http://www.jaist.ac.jp/project/NLP_Portal/doc/glossary/index.html
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> m <- naiveBayes(xy[,-5], xy[,5],laplace=1)
> table(xy[,5],predict(m,xy[,-5]))

No Yes
No   4   1
Yes  0   9

> m

Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = xy[, -5], y = xy[, 5], laplace = 1)

Laplace correction: Rでは？

A-priori probabilities:
xy[, 5]

No       Yes 
0.3571429 0.6428571 

Conditional probabilities:
Outlook

xy[, 5]  Overcast     Rainy     Sunny
No  0.1250000 0.3750000 0.5000000
Yes 0.4166667 0.3333333 0.2500000

Temp.
xy[, 5]      Cool       Hot      Mild

No  0.2500000 0.3750000 0.3750000
Yes 0.3333333 0.2500000 0.4166667

Humidity
xy[, 5]      High    Normal

No  0.7142857 0.2857143
Yes 0.3636364 0.6363636

Windy
xy[, 5]     False      True

No  0.4285714 0.5714286
Yes 0.6363636 0.3636364

m <- naiveBayes(xy[,-5], xy[,5],laplace=1) # とすればよい
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Laplace correction: Rでは？（続）

> library(e1071)
> setwd("D:/R/Sample")
> xy<-read.csv("PlayTennis.csv", header=TRUE)
> m <- naiveBayes(xy[,-5], xy[,5])
> table(xy[,5],predict(m,xy[,-5]))

No Yes
No   4   1
Yes  0   9

> m

Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = xy[, -5], y = xy[, 5])

A-priori probabilities:
xy[, 5]

No       Yes 
0.3571429 0.6428571 

Conditional probabilities:
Outlook

xy[, 5]  Overcast     Rainy     Sunny
No  0.0000000 0.4000000 0.6000000
Yes 0.4444444 0.3333333 0.2222222

Temp.
xy[, 5]      Cool       Hot      Mild

No  0.2000000 0.4000000 0.4000000
Yes 0.3333333 0.2222222 0.4444444

Humidity
xy[, 5]      High    Normal

No  0.8000000 0.2000000
Yes 0.3333333 0.6666667

Windy
xy[, 5]     False      True

No  0.4000000 0.6000000
Yes 0.6666667 0.3333333

参考: 違いを探してください
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– 数値属性の取り扱い

• 離散化。連続分布を仮定する

• 文書分類
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欠測値（属性値が不明）問題

• 問題: 属性 A の値がない事例があるとどうなるか?
– しばしば, 訓練時やテスト時に, 必ずしも全ての属性値が入手

できるとは限らない

• これを欠測値という

– 例: 医療診断

• <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>

• 値は、本当になかったり, またあっても信頼度が低かったりする

– 欠測値対応策: 学習時 versus 分類時

• 学習時: その属性値のみ無視をする（数えない）

• 分類時: その属性値の確率は参入しない（1と数える）

次の話題

39

対策例: 欠測値問題

• 一つの単純だが乱暴な解決案:
• 学習時: 当の サンプル は頻度計算には算入しない

• 分類時: 確率の計算から当の属性は省く

• 例:

P(Play=yes | E)  

= P(Temp=Cool | Play=yes) *

P(Humidity=High | Play=yes) *

P(Windy=True | Play=yes) *

P(Play=yes) / P(E)  

= (3/9) * (3/9) * (3/9) *(9/14) / P(E)

= 0.0238 / P(E)

P(Play=no | E)  

= P(Temp=Cool | Play=no) *

P(Humidity=High | Play=no) *

P(Windy=True | Play=no) *

P(Play=no) / P(E)  

= (1/5) * (4/5) * (3/5) *(5/14) / P(E)

= 0.0343 / P(E)

P(E)を求めれば: P(Play=yes | E) = 41%,     P(Play=no | E) = 59%

Outlook Temp. Humidity Windy Play

? Cool High True ?

数値属性の取扱い

• 初めから数値属性を扱っている分類器では、考える
必要がない。

• しかし、nave Bayes 分類器や、決定木では考える
必要がある。

• ２つの方法がある。

– 一つは、離散化する方法、

– 他の一つは、その属性値の分布としてある分布を仮定し、
数値から、確率に換算する

方法である。

次の話題
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対策1: 離散化する方法

• Vector quantization （ベクトル量子化）がある。

• 多くはもっと単純な方法で、そこそこに大丈夫。

• Naïve Bayes の各属性は一次元なので、より簡単
にできる。

– 決定木と同様である。

• 例えば、

これは Weka に入っている

Fayyad, U.M. and Irani, K.B.: Multi-interval discretization of continuous-
valued attributes for classification learning. In Proc. of the 13th IJCAI 
(pp. 1022–1027)

42
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対策2: 分布を仮定する

• よくある仮定: 属性値は正規分布をなす（クラス値が所与）

• 正規分布（ガウス分布）のパラメータは２個. 推定値は:

• 標本平均 

• 不偏分散 

• 密度関数 f(x):
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R の e1071 パッケージの naiveBayes では、この方法がとられている。実際、
The standard naive Bayes classifier (at least this implementation) assumes 
independence of the predictor variables, and Gaussian distribution (given the target 
class) of metric predictors.

天気とテニスの例（改変）

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 83 85 86 85 False 6 2 9 5

Overcast 4 0 70 80 96 90 True 3 3

Rainy 3 2 68 65 80 70

… … … …

Sunny 2/9 3/5 mean 73 74.6 mean 79.1 86.2 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 std dev 6.2 7.9 std dev 10.2 9.7 True 3/9 3/5

Rainy 3/9 2/5

PlayOutlook Temperature Humidity Windy

0340.0
2.62

1
)|66(

2

2

2.6*2

)7366(





eyesetemperaturf



確率値
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未知データの分類

• 持ちデータ E: 

P(Play=yes | E) = 

P(Outlook=Sunny | Play=yes) *

P(Temp=66 | Play=yes) *

P(Humidity=90 | Play=yes) *

P(Windy=True | Play=yes) *

P(Play=yes) / P(E)  

= (2/9) * (0.0340) * (0.0221) * (3/9) 
*(9/14) / P(E) 

= 0.000036 / P(E)

P(Play=no | E) = 

P(Outlook=Sunny | Play=no) *

P(Temp=66 | Play=no) *

P(Humidity=90 | Play=no) *

P(Windy=True | Play=no) *

P(Play=no) / P(E)  

= (3/5) * (0.0291) * (0.0380) * (3/5) 
*(5/14) / P(E) 

= 0.000136 / P(E)

Outlook Temp. Humidity Windy Play

Sunny 66 90 True ?
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文書分類

• 文書分類とは:
– 文書（メール、ニュース、webページ等々。それらの一段

落ということも、また、一文ということも）を分類すること
– 分りやすいのは、メールがスパムか否かの分類
– ブログを、スプログか否かに分類する、という課題もある

– ニュースが（ある人にとって）興味のあるものか否かを分
類する、というのもある。さらに、

– ある商品の評判を（良い評判も悪い評判も）集めるにも
「分類」が必要。そして、良い評判と悪い評判とに分ける。

– レビューを、信頼できる評価か信用できない評価かに分
けるのも、文書分類

– アンケート調査のうち、自由記述文の分類。
– コールセンターでの、QAの分類

47

文書分類の学習

• 共通性質:
– 例えば、「こういう特徴があれば、スパムメールである」という分類規

則を、人間が作るのは、大変。
• 最初に作るのが大変

• 規則に誤りや過不足が多いので、それを調べ、訂正するのが大変。

• 変化に追従するのが大変。

– 「学習」できると便利（実際には、「必須」）

• Naïve Bayes が結構うまくいく
– どうやって Naïve Bayes を用いるか?
– ポイント: どう事例（すなわち、１文書）を表現するか?  属性は何か?

http://www.state-itc.org/rtc2004/accessible/4_Managing_Risks_files/images/image66.png

Using Text Categorization Techniques for Intrusion Detection
From http://www.usenix.org/events/sec02/tech.html
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最も簡単な表現方法

• Bag-of-words, すなわち、袋一杯の単語 or 袋詰めの単語
– ある文書を、それぞれの単語が何回現れたかで表現する。

• "Bag" で、もとの文書のどこにあったかを忘れることを表している。

• また、単語の連なりも考えないことを表している。

• 例えば、仮に、「慶應」「義塾」「大学」がそれぞれ単語なら、「慶應義塾
大学」も「慶應大学義塾」も「義塾慶應大学」も同じと考えることになる。

– 「何を単語とするか」が結構重要。文書ごとに変わってはいけない。

• 英語であれば、dog と dogs といったような語形変化は無視した方がよ
い。

– 文書分類に役立ちそうもない単語は考えない

• 日本語で言えば、助詞（は、が、も、や、、、）がその代表。

• 英語で言えば、前置詞がその代表

• こういった、文法機能を持ち、単語単独では意味のない単語を機能語
という

– ノイズの可能性が高い単語は考えない。

• 文書集合内で、出現頻度が極めて低い（一回等）もの 49

最も簡単な表現方法

• この表現って naïve Bayes?
– ベイズ推論とは直接には関係しないので、naïve Bayes ではないが、

naïve な表現であることは間違いない。

– しかし、naïve Bayes 的に、文書の出現確率を書くことができる。

– 文書の属するクラスごとに、文書内にある特定の単語が出現する確

率 P(w1 |cj), P(w2 |cj), …, P(wn |cj) が決まっているとすると、 w1,
w2,…, wn が文書中に含まれる単語であるとき、そのような文書

が出現する確率を次のように書く

P(doc|cj)=P(w1 |cj)
TF(w1) P(w2 |cj)

TF(w2)… P(wn |cj)
TF(wn)

ただし TF(w) は単語 w の doc における出現度数(term frequency)

出現確率をこう書けば naïve Bayes といえよう
50

デモ

Text classification by Naive Bayes ver.2 日本語はじめました
http://sleepyheads.jp/apps/nb/nb2.html

Naïve Bayes による文書分類

• ある文書 doc につき

ただし、TF(wk,doc)=doc中のwkの出現度数、Voc は全単語（考えてい
る全単語）集合とした

• 単語の出現確率については、Laplace correction が必須。そこで、下
記の推定値を使用; ただし、nj=クラスcj中の全単語出現度数, nk,j=ク
ラスcj中の単語wk出現度数
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Twenty News Groups (Joachims 1996)

• 各グループ1000の訓練文書

• 新規の文書を、もとのnewsgroupに割振る

comp.graphics
comp.os.ms-windows.misc 
comp.sys.ibm.pc.hardware

comp.sys.mac.hardware
comp.windows.x & rec.sport.hockey

misc.forsale
rec.autos

rec.motorcycles
rec.sport.baseball
rec.sport.hockey

alt.atheism
soc.religion.christian

talk.religion.misc
talk.politics.mideast
talk.politics.misc 
talk.politics.guns

sci.space
sci.crypt

sci.electronics
sci.med

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. 
In Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, 1997, pp.143--151.

サンプル
Xref: cantaloupe.srv.cs.cmu.edu misc.headlines:41573 talk.politics.guns:53299

---- 略

Lines: 57
NNTP-Posting-Host: sandman.caltech.edu
manes@magpie.linknet.com (Steve Manes) writes:

>hambidge@bms.com wrote:
>: In article <C4psoG.C6@magpie.linknet.com>, manes@magpie.linknet.com (Steve Manes) wri

>: >: Rate := per capita rate.  The UK is more dangerous.
>: >: Though you may be less likely to be killed by a handgun, the average
>: >: individual citizen in the UK is twice as likely to be killed
>: >: by whatever means as the average Swiss.  Would you feel any better
>: >: about being killed by means other than a handgun? I wouldn't.
>: 
>: >What an absurd argument.  Switzerland is one-fifth the size of the
>: >UK with one-eigth as many people therefore at any given point on
>: >Swiss soil you are more likely to be crow bait.  More importantly,
>: >you are 4x as likely to be killed by the next stranger approaching
>: >you on a Swiss street than in the UK.

Killed by handgun, or killed?  If I'm dead, I don't much care if it
was by being shot or stabbed to death
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Twenty News Groups (Joachims 1996)

• Naive Bayes: 89% 分類正解率

– 頻出単語上位100 個 (the, and, of, …) は除去

• このように文法機能を担う単語や、文書を類別するのに有効でな
い単語を stop words として除去するのが普通

– 頻度が3回に満たない単語は除去

– 残った単語は、約 38,500 語

精度対訓練データ数（1/3はテスト用にとりおいた）

ただし、この正解率は高すぎ。20 Newsgroups 
の各投稿には、分類に非常に役立つ subject 
フィールドがある。今ではこれらは除去すること
になっているが、当時では、除去せずに、分類
実験をした可能性がある。

20 Newsgroups: Rでは？

• データが多すぎて、Rのパッケージに含まれる naïve Bayes 
分類器は使えない。
– データ行列（さきほどのRプログラムでは、xy, xy, tt といった行列）が

巨大になる（行数が文書数（約2,000）、列数が単語数（約40,000））。

– しかし、非零要素は非常に少ないので、スパース行列表示を用いれ
ばよい。

– それでもオーバーヘッドが大きい。

– それなら自分でプログラムを書いてしまおう。

• なお、Weka にもスパース行列が表現できて、原理的には取
り扱える。しかし、大きなメモリが必要で、しかも遅い。

正味40MB ぐらいしかな
いのですが
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20 Newsgroups: データ

• "20 Newsgroups" というサイトにあり
– http://qwone.com/~jason/20Newsgroups/

• 前処理（単語の切り出し等）が終わって、単語の個数のデー
タに編集が終わったものを用いる。Matlab で使いやすい形
になっている。
– 20news-bydate-matlab.tgz

– 05data-20news-bydate-matlab.zip として講義資料サイトに

• このうち、train.data, train.label, test.data, test.label を用い
る。

• プログラムは資料として web頁に掲載しておきます。

• 結果のうち、confusion matrix を次頁に示します。

• 正解率は、約78.2%です。
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> cm
correct

predicted   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
1  237   3   3   0   0   0   0   1   0   4   2   0   2  10   3   7   2  12   7  47
2    0 299  33   8   8  42   9   1   1   1   0   5  18   7   8   2   0   1   1   3
3    0   7 208  15  10   8   4   0   0   0   0   1   0   1   0   1   0   0   0   0
4    0  12  58 306  38  10  49   2   0   1   0   1  28   3   0   0   0   0   0   0
5    0   7  11  21 275   2  21   0   0   1   0   2   8   0   0   1   1   0   0   0
6    1  21  30   2   3 306   1   1   0   2   0   1   3   0   2   2   0   0   1   0
7    0   1   0   4   4   1 227   5   1   3   1   1   1   1   0   0   2   0   0   0
8    0   3   2   6   4   0  32 356  25   3   1   0   9   3   0   0   2   2   1   0
9    0   1   2   0   1   2   5   4 353   1   0   0   2   0   1   0   1   1   0   1
10   0   0   2   0   1   1   0   2   2 345   4   0   0   2   0   0   1   1   0   0
11   1   0   1   1   0   0   1   0   0  16 381   0   0   0   1   0   0   1   0   0
12   1  16  17   5   5  10   3   1   1   2   1 361  45   0   3   1   3   4   3   1
13   1   4   1  23  16   0  11   4   1   2   0   3 260   3   4   0   0   0   0   0
14   2   3   4   0   7   0   2   0   1   0   2   2   6 324   4   1   1   0   3   3
15   3   6   4   1   2   3   3   2   0   0   1   0   3   3 333   0   2   0   7   5
16  43   4   5   0   0   1   3   0   1   3   2   2   6  16   5 377   3   7   2  69
17   3   0   0   0   3   1   1   5   4   1   0   7   0   3   1   2 324   3  95  19
18   9   0   0   0   0   1   3   1   2   2   1   0   2   6   2   2   2 323   5   5
19   7   2   9   0   6   2   6   9   5   9   3   8   0  10  24   1  16  21 184   8
20  10   0   1   0   0   0   1   1   0   1   0   1   0   1   1   1   4   0   1  90

> 
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まとめ

• Naïve Bayes 分類器は簡単で強力

• Naïve Bayes 分類器で考えるべき重要な点

– 「度数=0」問題

– 欠測値問題

– 連続値の取扱い（これは、離散値を対象とする分
類器で、一般的な問題）

• 有効な応用分野としての文書分類がある
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本日の課題

– 難しくはないのですが（つまり過去のプログラムのコピー＆ペースト＋編集でできるの
ですが）、注意深く行う必要があります。

• COM実験で用いた文字認識のデータを用います。

• 学習データは optdigits.tra.csv、テストデータは optdigits.tes.csv です。

• 読み込むとき、read.csv の引数に colClasses="factor" を追加してください。

– これは、数値データを factor として読み込むためのおまじないです。

– なお、この csv ファイルには、ヘッダーはありません。ですから、read.csvの引数を一
箇所直す必要があります。考えてください。ヤマ勘であたります。

• 属性の個数が異なります。以前は（次のスライドにコピーがあります）、5個の属
性でしたが、今度は65個あります。以前は5番目が分類すべきクラスでしたが、
今度は65番目が分類すべきクラス（今回は数字の種類（0～9））です。

• テストデータがたくさんありますので、一個ずつの予測は印字しないで、
confusion matrix のみ印字してください。

– Confusion matrix の作り方は、次頁に書きました。
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本日の課題の参考
> xy<-read.csv("PlayTennis.csv", header=TRUE)
> xyt<-read.csv("PlayTennisTest02.csv",header=TRUE,as.is=TRUE)
> tt<-data.frame(factor(xyt[,1],levels=levels(xy[,1])))
> for (i in 2:5) {
+   tt<-data.frame(tt,factor(xyt[,i],levels=levels(xy[,i]))) 
+ }
> names(tt)<-names(xy)
> m <- naiveBayes(xy[,-5], xy[,5])
> # prediction and confusion matrix for test data
> predictedClassTest <-predict(m, tt) # prediction
> table(tt[,5], predictedClassTest)    # confusion mtrx

predictedClassTest
No Yes

No   1   0
Yes  0   1

Outlook Temp. Humidity Windy Play
Sunny Cool High True No
Rainy Mild Normal False Yes

PlayTennisTest02.csv
tt[,5] に書いた No/Yes

予測した No/Yes

パッケージ e1071 をインストールしてください。
library(e1071) として下さい 本日の課題に関するメモ

62

(1) 変数 tt を作るときに、例えば、

tt<-data.frame(factor(xyt[,1],levels=levels(xy[,1])))
for (i in 2:5) {
tt<-data.frame(tt,factor(xyt[,i],levels=levels(xy[,i]))) 

}

としたあと、間違い(5ですね)に気が付き

for (i in 2:65) {
tt<-data.frame(tt,factor(xyt[,i],levels=levels(xy[,i]))) 

}

とすると、このループの中で tt は「前の値に基づいて次の値を
作る」という動作をしているため、間違った tt にさらに（今度は
正しい値ですが）値を継ぎ足すということをしてしまいます。

対策：一行前の tt の初期化の部分から実行しなおす必要があ
る。つまり

tt<-data.frame(factor(xyt[,1],levels=levels(xy[,1])))
for (i in 2:65) {
tt<-data.frame(tt,factor(xyt[,i],levels=levels(xy[,i]))) 

}

です。

(2-1) colClasses="factor" の追加し忘れ。これは追加すれば
よい。例えば、
xy<-read.csv("optdigits.tra.csv", header=FALSE, 

colClasses="factor")
とすればよい。
(2-2) colClasses="factor" をコピーし、MsWordファイルに
ペーストし、MsWordファイルから、コピーしてRにペーストする。
そうすると、MsWordの機能で、ダブルクォートが全角文字に変
わってしまう。こんな風に。
colClasses=”factor”
このときRは何も言わずに何もしないようです。
何も言わないので、例えば、変数xy ができたように見えますが、
実は作成されていません。

対策：pdfファイルから直接コピーペーストする、手で打ち込む、
または、（MsWordではなく）メモ帳経由にする。

本日の課題＋α

ちょっとした「＋α」です。興味のある方、どうぞ。

• 本日の課題において、学習データ及びテスト
データの、confusion matrix と accuracy を
求めなさい。

– accuracy は、分類正解数 / データ数 です。

– accuracy は、（それぞれ）式一つで求まります。
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