
1

知的情報処理
6. 簡単便利な決定木:
作るのは少々難しい

櫻井彰人

慶應義塾大学理工学部

今日の目標

• 決定木の作り方を理解する

– 構築には、greedy アルゴリズム

• ノードに置く属性の選択: 情報量増分
– 「増分比」が必要な局面がある。

• 復習: 情報量について

– 回帰もできる（回帰木）

– R では、tree, rpart を試す

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI
– 回帰木
– Rにおいては

決定木とは

• 決定木は、他の学習器とかなり異なる
– 境界は、綺麗な関数ではかけない

– 何を目標としているか（何が目標関数か）明確ではない

– アルゴリズムは、OR的なもの（最適化）とはかけ離れている

• けれども、最終ユーザに非常に分かりやすく、誤差もそこそ
こに小さいため、重要なツールである

• 単純かつ有効なだけに、様々な工夫がされてきている。
– あなどってはいけない。

• 出来上がった決定木は理解しやすい（すぐ分かる。だから使
われる）。しかし、作るのは、結構、難しい。

決定木 Decision Trees

• 分類器 Classifiers である

– 事例 (ラベルのついていないもの): 属性 attribute (または特徴 feature) のベクトル

• 内節 Internal Nodes: 属性値のテストを行う

– 典型的: 等しいかどうかのテスト (e.g., “Wind = ?”)

– その他 不等式や様々なテストが可能

• 枝 Branches: 枝を選ぶ条件である属性値 (テストが等式以外のときはテストの結果)
– 一対一対応 (e.g., “Wind = Strong”, “Wind = Light”)

• 葉 Leaves: 割当てた分類結果 (分類クラスのラベル Class Labels)

Outlook?

Humidity? Wind?Maybe

Sunny Overcast Rain

YesNo

High Normal

MaybeNo

Strong Light

PlayTennis
に対応する決定木

どんな時、決定木を用いるか

• 事例が属性 - 属性値ペアで表現される

• 目標関数が離散値をとる（分類問題）

• 選言を含む仮説が必要

– 属性値に関する連言であれば、「概念学習」で可能

• ノイズが入っている可能性がある

• 例（実際に Mitchell が適用した）

– 機器故障診断、病名診断

– 与信リスクの分析

• クレジットカード, ローン

• 保険

• 消費者による不正行為

• 従業員の不正行為

2

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI
– 回帰木
– Rにおいては

決定木の学習 –流れ–

決定木の学習 = 決定木の構築

決定木の学習 –流れ–

No. 償還 家族 年収 不正

2 No 既婚 10M No

6 No 既婚 6M No

9 No 既婚 7M No
10

No. 償還 家族 年収 不正

3 No 独身 7M No

5 No 離婚 9M Yes

8 No 独身 8M Yes

10 No 独身 9M Yes
10

償還

不正
なし

Yes No

家族

不正
なし

不正

独身,
離婚

既婚

不正は
しない

No. 償還 家族 年収 不正

1 Yes 独身 12M No

2 No 既婚 10M No

3 No 独身 7M No

4 Yes 既婚 12M No

5 No 離婚 9M Yes

6 No 既婚 6M No

7 Yes 離婚 22M No

8 No 独身 8M Yes

9 No 既婚 7M No

10 No 独身 9M Yes
10

No. 償還 家族 年収 不正

2 No 既婚 10M No

3 No 独身 7M No

5 No 離婚 9M Yes

6 No 既婚 6M No

8 No 独身 8M Yes

9 No 既婚 7M No

10 No 独身 9M Yes
10

No. 償還 家族 年収 不正

1 Yes 独身 12M No

4 Yes 既婚 12M No

7 Yes 離婚 22M No
10

償還

不正
なし

不正
する

Yes No

No. 償還 家族 年収 不正

3 No 独身 7M No
10

償還

不正
なし

Yes No

家族

不正
なし

不正

独身,
離婚

既婚

年収

不正
なし

< 8M >= 8M
No. 償還 家族 年収 不正

5 No 離婚 9M Yes

8 No 独身 8M Yes

10 No 独身 9M Yes
10

決定木の学習 –１ノード–

D13

D12 D11

D10
D9

D4

D7

D5

D3
D14

D8

D6
D2

D1

D13

D12

D11

D10

D9

D4
D7

D5

D3

D14

D8 D6

D2

D1

Outlook

[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

http://www.cornerstoneautosys.com/conveyor/

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI
– 回帰木
– Rにおいては

決定木の作成 –グリーディ方略–

 グリーディな方略.
一般： いったん決めたら、心変わりしない

 迷路を進むときに、後戻りしない。一度掴んだら離さない。

 最適ではないが、後戻りしない分、速い。

決定木： 訓練データを、ある評価基準を最適化するように、
ある属性で分割する.
 一度分割してある枝を作ったら、それを取りやめることはない

 課題
訓練データの分割方法を決定する

 属性テスト方法をどう定めるか？

 最良の分割をどう決めるか？

 （分割の）止め時の決め方

目次代わり

3

決定木の作成 –グリーディ方略–

 グリーディな方略.
一般： いったん決めたら、心変わりしない

 迷路を進むときに、後戻りしない。一度掴んだら離さない。

 最適ではないが、後戻りしない分、速い。

決定木： 訓練データを、ある評価基準を最適化するように、
ある属性で分割する.
 一度分割してある枝を作ったら、それを取りやめることはない

 課題
訓練データの分割方法を決定する

 属性テスト方法をどう定めるか？

 最良の分割をどう決めるか？

 （分割の）止め時の決め方

目次代わり

ノード上の属性の決め方

 属性タイプによって異なる

名義変数

順序変数

数値変数

 いくつに分割するかによって異なる

 2分割

多分割

名義変数による分割

 多分割: 当該変数の変数値の「異なり数分」、分割する.

 ２分割: 変数値を２個に分割する.
最適な分割を求める必要あり.

車タイプ
ファミリー

スポーツ

ラグジュリー

車タイプ
{ファミリ,

ラグジュリー} {スポーツ}

車タイプ{スポーツ
, ラグジ
ュリー}

{ファミリー} または

 多分割: 異なる値の個数分、分割.

 ２分割: ２つの部分集合に分割.
最適分割を見つける必要あり.

 この分割は?

順序変数に基づく分割

サイズ
S

M

L

サイズ
{M, L} {S}

サイズ
{S, M} {L}

OR

サイズ
{S, L} {M}

属性値の固有な順序を無
視している.

一概にはいえない。
これが良い時もある。

数値変数に基づく分割

 身長、体重、血圧、コレステロール値、、、、
 1単位ずつ分けると分けすぎ。

離散化: いくつかの境（閾値ともいう）を設けて、いくつか
に分ける。

 いくつかの方法がある
離散化 して順序属性として扱う

 静的 – 最初に一回だけ離散化

 動的 – 等幅区間、等頻度区間（パーセンタイル）、クラスタリング

 ２値判別: (A < v) または (A  v)
 すべての可能な分割を考え、ベストなものを見出す

 学習データは有限個

 計算が一層必要となることも

決定木の作成 –グリーディ方略–

 グリーディな方略.
一般： いったん決めたら、心変わりしない

 迷路を進むときに、後戻りしない。一度掴んだら離さない。

 最適ではないが、後戻りしない分、速い。

決定木： 訓練データを、ある評価基準を最適化するように、
ある属性で分割する.
 一度分割してある枝を作ったら、それを取りやめることはない

 課題
訓練データの分割方法を決定する

 属性テスト方法をどう定めるか？

 最良の分割をどう決めるか？

 （分割の）止め時の決め方

目次代わり

4

最良な分割はどうやって見つける？

分割前: C0 （クラス0）に 10 データ,
C1 （クラス1）に 10 データ

どの条件が最適か?

自家用
車?

C0: 6
C1: 4

C0: 4
C1: 6

C0: 1
C1: 3

C0: 8
C1: 0

C0: 1
C1: 7

車
タイプ?

C0: 1
C1: 0

C0: 1
C1: 0

C0: 0
C1: 1

学生
ID?

...

Yes No ファミリ

スポーティ

ラグジュリ c1
c10

c20

C0: 0
C1: 1

...

c11

最良な分割はどうやって見つける？

 グリーディ方略:
 新ノード内のクラス分布が 同質となる 分割がベター

どこかのクラスが圧倒的な多数となる（これが同質）という
ことは、それだ！といっても間違いが少ない

 （ノードの）同質さの物差しが必要:

非-同質, 純度が低い

不純度が高い

同質, 純度が高い

不純度が低い

最良な分割はどうやって見つける？

B?

Yes No

ノード N3 ノード N4

A?

Yes No

ノード N1 ノード N2

分割前:

C0 N10
C1 N11

C0 N20
C1 N21

C0 N30
C1 N31

C0 N40
C1 N41

C0 N00
C1 N01

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs M0 – M34

M0 = N00とN01のエントロピー

不純度のものさし

 エントロピー

 ジニ・インデックス Gini Index

 誤分類率

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI
– 回帰木
– Rにおいては

エントロピー
 平均情報量とも呼ばれる。式で書くと

 （比較のために）サイコロの出る目の平均

 つまり、平均情報量が情報量の平均だとすると
が「情報量」ということになる

   mm

mmm

pppp

ppppppH

2121

21211

log...log

log...log),...,(




6...21 621  ppp

ip2log
負の符号「」がついているのは、p<1 故 log p <0 となるが、負の
数はいろいろと不便なため、 符号反転しているから OR
½ のべき乗を考えるから（2のべき乗ではない）

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p

-l
o

g
(p

)

5

情報量

ある事象の情報量は、

その事象が起こったということを（他の皆が知らないときに）
知ることの価値

「事象」として「コインの表が出ること」（確率1/2））としよう。

「表が出たこと」を知る価値を a としよう。

「コイン１が表」「コイン２が表」という２つの情報を知る価値は
a + a = 2a だろう（一つずつ聞く場合を考えればよい）。

「コイン１が表」「コイン２が表」の二つの事象が起こる確率は
½ * ½ =1/4 。

「事象」として「サイコロの１が出ること」（確率1/6））としよう。

「１が出たこと」を知る価値を b としよう。

「サイコロ１が１」「サイコロ２が１」という２つの情報を知る価値
は b + b = 2b だろう（一つずつ聞く場合を考えればよい）。

「コイン１が表」「コイン２が表」の二つの事象が起こる確率は
1/6 * 1/6 =1/36 。

つまり、事象が起こる確率が２乗になると、価値は２倍になる

情報量を表す関数

事象が起こる確率が２乗になると、価値は２倍になる

事象が起こる確率 p が p2 になると、価値 v は 2v になる

事象が起こる確率 p が p2 になると、価値 v(p) は v(p2) = 2v(p) になる

上記のような関数は log しかないことが示せる（底は決まらない。報酬による）

そこで、底を２とし価値が正になるように符号反転すると（底を1/2 にしたのと同
じ）、生起確率 p の事象が生起したことを知るという情報の価値は、-log p とす
ればよいことが分る。

ppp 212 loglog)(情報量

予想屋を想像して下さい。一度予想して正解して報酬を得る。再び予想して正解して報酬を得る。
2回とも正解の確率は積、報酬は和でしょう？

不公平かもしれないコイン

 表が出る確率 p, 裏が出る確率が 1-p であるコイン
のコイン投げを考える。

 このコインを１回投げたときに出た「表・裏」を知る情
報の価値はどのくらいであろうか？

 「表が出る」という情報の価値は、-log p, 「裏が出る」
という情報の価値は、-log(1-p)である。

 表が出る確率は p, 裏が出る確率は 1-p であるので、
この確率に基づく（情報価値の）平均値を考えよう

   
)1(log)1(log

)1(log)1(log)1,(

22

22

pppp

ppppppH




不公平かもしれないサイコロ

 「目iが出る」確率 pi であるサイコロを考える。

 このサイコロを１回投げたときに出た目を知る情報の
価値はどのくらいであろうか？

 「目iが出る」という情報の価値は、-log piである。

 この確率に基づく（情報価値の）平均値を考えよう

     
626222121

626222121

621

logloglog

logloglog

),,,(

pppppp

pppppp

pppH










目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI
– 回帰木
– Rにおいては

不純度を測る物差しとしての情報量

 不純度

 2種類の個体が混在している場合を考える。割合をpと1-pとする。p=0またはp=1のときは最も純粋

であるので、このとき0、p=1/2のとき最も純度が低いので、このとき1になるような関数があるとよい。

明らかにエントロピーがその性質を満たす。

 一般にn種類の個体が混在している場合はどうだろうか。割合をp1,…pn とする。pi のいずれかが1
で他が0というときが最も純度が高い。逆にpi のすべてが等しいとき（1/nの時）最も純度が低い。明

らかにエントロピーはこの性質をもつ。そこで、

 補足: エントロピー値は、「集合の要素一個あたり」の情報量となっている

    
 













classes(D)c

cc

D

D

D

D
DH DnInformatio-non log

6

情報量増分

 定義

 属性 A に関するD の情報量増分は, A を用いた分割によるエントロピー減少分の期待値:



但し Dv は {x  D | x.(A) = v }, すなわち, D 中の事例で属性 A の値が v であるものの集合

 補足: A による分割によって生じる部分集合 Dv の大きさに従ってエントロピーの大きさを調整

 エントロピー値は、「集合の要素一個あたり」の情報量となっているため

 どちらの属性を使うのがいい?

         




















 

 values(A)v
vv

values(A)v
v

v DHDDHD
D

DH
D

D
DH AD,nGainInformatio

1

[21+, 5-] [8+, 30-]

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

 DH

 1DH  2DH

要は、逆を考えて、
下るに従い、
「混沌さ」が減ればよい
「クリア」になればよい

混沌さが小
エントロピーが小

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI
– 回帰木
– Rにおいては

あらためて: 決定木の構築

 通常の手順: 上から下に（根から葉へ）そしてgreedy、

再帰的かつ分割統治（divide-and-conquer）

 まずは: 一つの属性を選び根とする。属性値ごとに枝を作る

 次は: 訓練データを部分集合に分割 （枝一本につき一個）

 最後に: 同じ手順を、個々の枝について行う。その場合、個々の枝に

割り当てられた訓練データのみを用いる（全体は用いない）

 ノードに（それへの枝に）割り当てられた訓練データがすべて

同じクラスになったら、終了

http://www.freepatentsonline.com/7086519.html

テニスをするや否や

Tom Mitchell “Machine Learning” の例題. よく使われる

どの属性がいいのか？

(a)
(b)

(c) (d)

属性選択の基準

 どの属性が最適化?

 できあがる決定木が最小のものがよい
 ヒューリスティック: “純度” 最高の属性を選ぶ

 「最小」のものを選ぶことに関し、深遠な議論がある

 良く使われる “不純度” の基準: （ノードの）エントロピー
 エントロピーが低いほど、ノードの “純度” は高い.

 方略: 子供のノードのエントロピーが最小となる属性を選べ.

http://splinedoctors.com/2009/02/hurry-up-and-choose/

7

計算例: 属性 “Outlook”

“Outlook” = “Sunny”:
info([2,3]) = entropy(2/5,3/5) = – (2/5)log(2/5) – (3/5)log(3/5) = 0.971

“Outlook” = “Overcast”:
info([4,0]) = entropy(1,0) = – 1 log(1) – 0 log(0) = 0

“Outlook” = “Rainy”:
info([3,2]) = entropy(3/5/,2/5) = – (3/5)log(3/5) – (2/5)log(2/5) = 0.971

この属性を用いたときの情報量は
info([3,2],[4,0],[3,2]) = (5/14)×0.971 + (4/14) ×0 + (5/14) ×0.971

= 0.693 bits

     

   






























values(A)v
vv

values(A)v
v

v

DHDDHD
D

DH
D

D
DH AD,nGainInformatio

1

http://www.space.com/4700-weather-outlook-improves-thursday-shuttle-launch.html

計算例: 情報量増分

 ただし、通常は、ノードのエントロピーを直接用いる
ことはない。情報量増分を用いる.

 情報量増分が多いほど、純度が高い。従って、 “Outlook” を
選ぶことにする。

情報量増分: 分割前の情報量 – 分割後の情報量
gain(“Outlook”) = info([9,5]) – info([2,3],[4,0],[3,2]) = 0.940 – 0.693

= 0.247 bits
同様に計算すると

gain(“Outlook”) = 0.247
gain(“Temperature”) = 0.029
gain(“Humidity”) = 0.152
gain(“Windy”) = 0.048

分割を続ける 最終的に得られる決定木

 注: すべての葉が “純” である必要はない; というのも、同じ
データなのにクラスが違うことがあるから（ノイズのせい）

データがそれ以上分割しない方がよくなったら、やめ

http://www.mochadad.com/2011/01/the-importance-of-family-goal-setting

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI
– 回帰木
– Rにおいては

ちょっと問題が

 属性値の多い属性（例えば、ID）があると、おかしく
なる

属性値の多い属性が選ばれてしまう

選んでみると、おかしい！

8

枝数が非常に多くなる属性があると、、、

 IDコードをつけてみよう

IDコードを根にもってくると、 “切株”

この分割のエントロピー
info(“IDcode”) = info([0,1]) + info([0,1]) + … + info([0,1]) = 0 bits
⇒ 情報量増分は最大となる（すなわち、 0.940 bits ）

http://www.extension.umn.edu/yardandgarden/ygbriefs/h446removetree.html

枝分かれの多い属性

従って,

 属性値が多いと、訓練データの部分集合は “純” に
なりやすい

情報量増分は、属性値の多い属性の方にバイアスしてい
る

この結果、過学習 overfitting (過去のデータの学習という

意味では素晴らしいが、予測のためには最適でない属性
を選んでしまう)になってしまう。

一つの解決法：増分比

 増分比 Gain ratio: 情報量増分のもつバイアスを減

少させる

 増分比は、枝の本数とそれに割り当てられる訓練

データの大きさの両方を勘定に入れる

情報量増分の修正は、訓練データの集合をどのような

（大きさと要素数の）部分集合に分割するかという分割の

情報量を用いて、行われる

増分比の計算例

計算例: IDコードの分割情報量（split information）
info([1,1,…,1]) = 14 × (- (1/14) log(1/14)) = 3.807 bits

増分比の定義
gain_ratio(“Attribute”) = gain(“Attribute”) / split_info(“Attribute”)

計算例:
gain_ratio(“IDcode”) = 0.940 bits / 3.807 bits = 0.246

     

 




























































D

D
,...,

D

D
,

D

D
H

D

D

D

D
AD,mationSplitInfor

DH
D

D
DH AD,nGainInformatio

|A|21

values(A)v

vv

values(A)v
v

v

log

他の属性に関する増分比

ID
Info: 0
Gain: 0.940
Split info: 3.807
Gain ratio: 0.246

9

解決した？解決しない？

 “Outlook” がトップであるが、今度は “Humidity” が肉薄して
いる。というのも、 “Humidity” は2個に分割するため、増分
比が相対的に良くなるためである.

 見ればわかるように: “ID code” の増分比が最大！. もっとも
そのアドバンテージは大分と減少したが.

 増分比の問題点: 過補償となるおそれがあること
 分割情報量が小さいために、不適当な属性が選ばれる可能性

 よくある修理方法: 増分比が最大のものを選ぶのだが、当該属性の
情報量増分は、少なくとも、情報量増分の平均値（全属性で考えて）
はあるものという条件を課す.

補足

 決定木のトップダウン（根から葉へ）アルゴリズム(“ID3”)は、
Ross Quinlan (University of Sydney Australia) が開発

 増分比は、このアルゴリズムの基本的な改良の一つ
 これに引き続き開発されたのが C4.5。 数値属性、欠測値、ノイズの

あるデータが扱える

 属性選択には他の方法がたくさんある! (といっても、結果の
精度にはあまり違いがない)

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI index
– 回帰木
– Rにおいては

数値属性

 属性テストは次の形をとる xj > ある定数
 属性値のなす空間を短冊に分割する

数値属性

• 勿論、これでもいい xj > ある定数

• 短冊への分割は同じ

破産の予測

L: 一年あたりの支払い遅延回数
R: 支出/ 収入
B: 破産

10

分割を考えよう

 各属性ごとに、分割することを考えよう

• 今回の例では、 R軸 に

沿っての分割の仕方は、
高々 9 方法ある

– 一般に, 訓練データが m
個あれば、 m – 1 方法
ありそう

– しかし今回の場合は、R
軸の値が同じデータが
あるので、その分、減っ
た.

分割その II

 L 軸では高々 6 方法ある
 L 軸は整数値をとるので、値が重複するデータは多い.

分割によるエントロピーを計算

6.5 7 6 0 1 0.93

5.0 7 4 0 3 0.74

3.5 6 3 1 4 0.85

2.5 5 2 2 5 0.86

1.5 4 0 3 7 0.63

0.5 1 0 6 7 0.93

境界

下方
にある
Noの
個数

下方
にある
Yesの
個数

上方
にある
Noの
個数

上方
にある
Yesの
個数

エントロ
ピー

エントロピー 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92

境界 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80

承前

 それぞれの軸でのすべての可能性を考え、分割した場合の
エントロピーを計算した

• たまたま、L 軸で、境界を 1.5 とした場合、片側が No だけにな
ることがわかった（エントロピーも最小）

6.5 7 6 0 1 0.93

5.0 7 4 0 3 0.74

3.5 6 3 1 4 0.85

2.5 5 2 2 5 0.86

1.5 4 0 3 7 0.63

0.5 1 0 6 7 0.93

上方
にある
Yesの
個数

エントロ
ピー

境界

下方
にある
Noの
個数

下方
にある
Yesの
個数

上方
にある
Noの
個数

エントロピー 1.00 1.00 0.98 0.98 0.94 0.98 0.92 0.98 0.92

境界 0.25 0.40 0.60 0.85 1.05 1.15 1.35 1.60 1.80

承前

 残りの空間のすべての分割を考える.

 エントロピーは再計算が必要. すでに葉に割り当てられた訓
練データは取り除いて考えなければならないから.

エントロピー 0.85 0.88 0.79 0.60 0.69 0.76 0.83

境界 0.25 0.40 0.60 0.90 1.30 1.60 1.80

6.5 3 6 0 1 0.93

5.0 3 4 0 3 0.74

3.5 2 3 1 4 0.85

2.5 1 2 2 5 0.86

上方
にある
Yesの
個数

エントロ
ピー

境界

下方
にある
Noの
個数

下方
にある
Yesの
個数

上方
にある
Noの
個数

承前

 今度の最適な分割は R > 0.9 である. しかも、すべて Yes で
あるので、葉を作ることができる.

エントロピー 0.85 0.88 0.79 0.60 0.69 0.76 0.83

境界 0.25 0.40 0.60 0.90 1.30 1.60 1.80

6.5 3 6 0 1 0.93

5.0 3 4 0 3 0.74

3.5 2 3 1 4 0.85

2.5 1 2 2 5 0.86

上方
にある
Yesの
個数

エントロ
ピー

境界

下方
にある
Noの
個数

下方
にある
Yesの
個数

上方
にある
Noの
個数

11

承前

 これを続ければ次のものが得られる:

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI index
– 回帰木
– Rにおいては

GINI に基づく分割基準

 これまで説明してきた分割基準はエントロピーで
あった:

(注: p(j | t) はノード t におけるクラス j データの相対頻度).

 別法に GINI インデックスを用いるものがある:

 両者とも:
 最大値 (log nc または 1 - 1/nc) が得られるのは,

当該データがどのクラスにも等分に分配されてい
るときである. 「等分である」ということは何の面白
さもない. しかし、この状態で、ずっと「実はこ

れ！」と教わり続けることは結構価値のあること
である。

 最小値 (0.0) に近い値が得られるのは, ほとんど
すべてのデータが同一のクラスに属するとき. 少
数派が発生する場合は、非常に面白い。けれど
も、たいていは多数派が発生するので、まったく
面白くない。


j

tjptjptEntropy)|(log)|()(


j

tjptGINI 2)]|([1)(

2個のクラスに
分ける場合:

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI index
– 回帰木
– Rにおいては

回帰木 Regression Trees

 決定木と同じ, 但し 葉において、実数値定数を出力する.

葉における値

 今いる葉ノードには複数個のデータがあると仮定しよう。なおかつ、何らか
の理由により、このノードはこれ以上分割しないものとする.

 離散値の場合（これまでの場合）, 葉における値（出力値）は、その葉におけ
る多数派の値としていた.

 数値属性の場合, 妥当な値は平均値であろう.

 従って, もし葉ノードにおける出力値として平均値を用いるならば, （これから
ノードを分割して子供が葉ノードになろうというときには）枝分かれして作ら
れる新たな葉ノードにおいて、データのもつ値が、当該葉ノード内の値の平
均値よりあんまり離れていない方がよかろう.

 統計学には、数値の集合がどのくらい分散しているかを表す尺度がある
 (言い換えれば, 個々の数値が平均値からどれだけ離れているか);
 ご存じの分散である.

12

ノード分割（データの分割）

 分割のよさを計る尺度として分散の平均値を用いることにする.

 （出力たるべき） y 値のみを記す.

ノード分割

 離散値の場合と同様に、分散の平均値を計算するとき、各新ノードに渡
されるデータ数で重み付けた、重み付き平均値を用いることにする（そう
でなければならない）.

)()1()()(1202
jjjj DpDpjAv  

fj =0 となる, Dの部分集合D0
j の要素数 / Dj の要素数

エントロピー（平均情
報量）と考えが同じ

ノード分割

 簡単に計算できることだが、属性３を用いた分割の場合の分散平均値は、
属性７を用いた場合のそれより、非常に小さい。従って、属性３を選ぶこ
とになる.

目次

• 決定木
– 決定木とは
– 決定木の学習 – 流れ、1ノード、Greedy方略 –

– ノード上の属性の決め方 –名義属性、数値属性–

– 復習: エントロピー
– 不純度を測る物差しとしての情報量、情報量増分
– あらためて、決定木の構築
– ちょっと問題が –枝分かれの多い属性–

– 数値属性
– GINI index
– 回帰木
– Rにおいては

Rにおける決定木

• R には、決定木関連のパッケージとして、
tree、 rpart、 及び rpart を多変量回帰木
(multivariate regression trees)に拡張させた
mvpart がある。

分類木の例（tree）
data(iris)
(iris.tr<-tree(Species~.,data=iris))
plot(iris.tr,type="u"); text(iris.tr)

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor

virginica virginica virginica

(iris.tr1<-snip.tree(iris.tr,nodes=c(12,7)))
plot(iris.tr1,type="u");text(iris.tr1)

1) root 150 329.600 setosa (0.33333 0.33333 0.33333)
2) Petal.Length < 2.45 50 0.000 setosa (1.00000 0.00000 0.00000) *
3) Petal.Length > 2.45 100 138.600 versicolor (0.00000 0.50000 0.50000)
6) Petal.Width < 1.75 54 33.320 versicolor (0.00000 0.90741 0.09259)
12) Petal.Length < 4.95 48 9.721 versicolor (0.00000 0.97917 0.02083)
24) Sepal.Length < 5.15 5 5.004 versicolor (0.00000 0.80000 0.20000) *
25) Sepal.Length > 5.15 43 0.000 versicolor (0.00000 1.00000 0.00000) *

13) Petal.Length > 4.95 6 7.638 virginica (0.00000 0.33333 0.66667) *
7) Petal.Width > 1.75 46 9.635 virginica (0.00000 0.02174 0.97826)
14) Petal.Length < 4.95 6 5.407 virginica (0.00000 0.16667 0.83333) *
15) Petal.Length > 4.95 40 0.000 virginica (0.00000 0.00000 1.00000) *

|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

setosa

versicolor virginica

virginica

library(tree)

13

分類木の例（tree）
library(tree)
(iris.tr1<-snip.tree(iris.tr,nodes=c(12,7)))
iris.label<-c("S", "C", "V")[iris[, 5]]
plot(iris[,3],iris[,4],type="n")
text(iris[,3],iris[,4],labels=iris.label)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)

1 2 3 4 5 6 7

0
.5

1
.0

1
.5

2
.0

2
.5

iris[, 3]

ir
is

[,
4

]

SSS SS

S
S
SS
S
SS

SS
S

SS
S SS

S

S

S

S

SS

S

SS SS

S

S
SSSS
S

S S
SS
S

S

S
S

SSSS

C
C C

C

C

C

C

C

C
C

C

C

C

C
C

C
C

C

C

C

C

C

C

C
C
C C

C

C

C
C

C

C

C
C
C

C

CCC
C

C

C

C

C
C
CC

C

C

V

V

V

V

V
V

V
VV

V

V
V

V
V

V
V

V

V
V

V

V

V V

V

V

VVV

V

V

V
V

V

V
V

V
V

VV

V

V
V

V

V

V

V

V
V

V

V

setosa

versicolor virginica

virginica

この図は分かりやすくてよいのだが、
rpartには用意されていない。

回帰木の例（tree）

> Library(tree)
> data(cars)
> cars.tr<-tree(dist~speed,data=cars)
> print(cars.tr)
node), split, n, deviance, yval

* denotes terminal node

1) root 50 32540.0 42.98
2) speed < 17.5 31 8307.0 29.32
4) speed < 12.5 15 1176.0 18.20
8) speed < 9.5 6 277.3 10.67 *
9) speed > 9.5 9 331.6 23.22 *

5) speed > 12.5 16 3535.0 39.75 *
3) speed > 17.5 19 9016.0 65.26
6) speed < 23.5 14 2847.0 55.71 *
7) speed > 23.5 5 1318.0 92.00 *

> plot(cars.tr,type="u")
> text(cars.tr)
> plot(cars.tr,type="u")
> text(cars.tr)
>

Library(tree)
data(cars)
cars.tr<-tree(dist~speed,data=cars)
print(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)

|
speed < 17.5

speed < 12.5

speed < 9.5

speed < 23.5

10.67 23.22

39.75 55.71 92.00

回帰木の例（tree）

> plot(cars$speed,cars$dist)
> partition.tree(cars.tr,add=T,col=2)
>

5 10 15 20 25

0
2

0
40

60
80

10
0

12
0

cars$speed

ca
rs

$d
is

t

回帰木の例（tree）

(cars.tr1<-prune.tree(cars.tr,best=4))
plot(cars.tr1); text(cars.tr1,all=T)

plot(cars$speed,cars$dist)
partition.tree(cars.tr1,add=T,col=2)

|
speed < 17.5

speed < 12.5 speed < 23.5

42.98

29.32

18.20 39.75

65.26

55.71 92.00

5 10 15 20 25

0
20

40
6

0
80

1
00

12
0

cars$speed

ca
rs

$d
is

t

では、別のデータで

• 例によって、テニスのデータを用いてみよう

• このデータの特徴は、すべての属性が離散
値であること Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

> setwd("D:/R/Sample")
> playTennis <- read.csv("PlayTennis.csv", header=T)
> (playTennis.tr<-tree(Play~.,data=playTennis))
node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 14 18.250 Yes (0.3571 0.6429)
2) Humidity: High 7 9.561 No (0.5714 0.4286) *
3) Humidity: Normal 7 5.742 Yes (0.1429 0.8571) *

> plot(playTennis.tr); text(playTennis.tr)

|
Humidity:a

No Yes

これは失敗と言っていいでしょう。なぜこうなってしまったのでしょうか？
それは、枝分かれするときの条件が厳しく（つまり、枝分かれしないように）なっているからです。
それ（つまり、制御の仕方）を調べてみましょう。
?tree
として下さい。"tree" の説明書が得られます。しかし、木を生成するときの制御の仕方についての
記述は見つかりません。こういうときは、control というキーワードを探してみます。下の方に
control.tree という文言があります。ここをクリックするか

?control.tree
としてみてください。tree.control(nobs, mincut = 5, minsize = 10, mindev = 0.01) が制御方法
であり、default値であることが分ります。多少試行錯誤すると、treeにおいては、mincut = 1,
minsize = 2 が最小値、つまり、最も木が発達しやすいパラメータであることが分ります。そこで、
tree.control(length(playTennis[,1]), mincut = 1, minsize = 2)
としてみますが、結果は変わりません。
理由は分りません。
やむをえず、別のライブラリを使うことにします。

library(tree) としたあと

説明が必要です。なお、漢字もOK

14

> library(rpart)
> setwd("D:/R/Sample")
> playTennis <- read.csv("PlayTennis.csv", header=T)
> (playTennis.tr <- rpart(Play~ ., playTennis))
n= 14

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 14 5 Yes (0.3571429 0.6428571) *
> plot(playTennis.tr); text(playTennis.tr)
以下にエラー plot.rpart(playTennis.tr) : fit is not a tree, just a root

これはもっと悪い。枝分かれせず、根のみとなってしまった。
先ほどと同様に
?rpart
としてみましょう。今度は引数に control というものがあります。その下にある例題を見ると、rpart.control を使え
ばよいことが分ります。rpart.control をクリックするか ?rpart.control としてみましょう。Minsplit を小さくすれば良
さそうなことが想像できます。試してみましょう。

> library(rpart)
> setwd("D:/R/Sample")
> playTennis <- read.csv("PlayTennis.csv", header=T)
> (playTennis.tr <- rpart(Play~ ., playTennis,
+ control=rpart.control(minsplit=1)))
n= 14

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 14 5 Yes (0.3571429 0.6428571)
2) Outlook=Rainy,Sunny 10 5 No (0.5000000 0.5000000)
4) Humidity=High 5 1 No (0.8000000 0.2000000)
8) Outlook=Sunny 3 0 No (1.0000000 0.0000000) *
9) Outlook=Rainy 2 1 No (0.5000000 0.5000000)
18) Windy=True 1 0 No (1.0000000 0.0000000) *
19) Windy=False 1 0 Yes (0.0000000 1.0000000) *

5) Humidity=Normal 5 1 Yes (0.2000000 0.8000000)
10) Windy=True 2 1 No (0.5000000 0.5000000)
20) Outlook=Rainy 1 0 No (1.0000000 0.0000000) *
21) Outlook=Sunny 1 0 Yes (0.0000000 1.0000000) *

11) Windy=False 3 0 Yes (0.0000000 1.0000000) *
3) Outlook=Overcast 4 0 Yes (0.0000000 1.0000000) *

> plot(playTennis.tr); text(playTennis.tr)

|Outlook=bc
Humidity=a

Outlook=c
Windy=b

Windy=b

Outlook=b
No

No Yes No Yes

Yes

Yes

今度はうまく行ったようである。では、未知データがどう分類されるか見てみよう。
"predict" について rpart の説明書中には記述がない。
こういったときは、 ?predict.rpart としてみる（つまり、クラス rpart のメソッド predict）。
パッケージ e1071の naiveBayes とは異なり、次のように簡単にテストできる。

PlayTennisTest02 <- read.csv("PlayTennisTest02.csv",header=TRUE)
predict(playTennis.tr, PlayTennisTest02)

> levels(playTennis$Outlook)
[1] "Overcast" "Rainy" "Sunny"
> levels(playTennis$Temp.)
[1] "Cool" "Hot" "Mild"
> levels(playTennis$Windy)
[1] "False" "True"

> playTennisTest02 <- read.csv("PlayTennisTest02.csv",header=TRUE)
> predict(playTennis.tr, playTennisTest02)

No Yes
[1,] 1 0
[2,] 0 1
> playTennisTest02
Outlook Temp. Humidity Windy Play

1 Sunny Cool High True No
2 Rainy Mild Normal False Yes

結果は勿論、想定通り。なお、パラメータに type があり、type="prob" とすれば確率値の
出力が可能です。

> predict(playTennis.tr, PlayTennisTest02, type="prob")
No Yes

[1,] 1 0
[2,] 0 1
> # level number, class frequencies, probabilities
> predict(playTennis.tr, PlayTennisTest02, type="matrix")

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 0 1 0
[2,] 2 0 3 0 1

気がついたかもしれませんが、tree も rpart も 2分木しか作りません。
その点では、weka の J48 の方がよくできています。

今日の課題

• Naïve Bayes のときの「今日の課題」とデータは同じです。

• rpart を用いて、下図左の訓練データが与えられたとき、下図
右のテストデータの属性「スキー」の値を推定せよ。

• Rを使ってください。

雪 天気 シーズン 体調 スキー

ベタ 霧 ロー 回復 no
新雪 晴 ロー 回復 yes
新雪 霧 ロー 回復 yes
ざらめ 霧 ロー 怪我 no
新雪 晴 ロー 怪我 no
ベタ 晴 ロー 回復 yes
新雪 霧 ロー 回復 yes
ベタ 晴 半ば 回復 yes
新雪 晴 ハイ 回復 yes
新雪 風 ロー 回復 yes
ざらめ 霧 半ば 回復 no
新雪 風 ロー 回復 yes
新雪 晴 半ば 回復 yes
ざらめ 風 ハイ 疲労 no

雪 天気 シーズン 体調 スキー

ベタ 風 半ば 疲労 ?

時間が余る人向け
• 「今日の課題」について、学習データの confusion matrix を作ってください。

• 面倒なことは、rpart木の予測値（predictの出力値）が、no, yes の2列の matrix
（行は各データ）になることです。

– 一方、正解として用意しているのは、yes, no が一列に並んだ配列です。

• 次のような方法が考えられます（いくつもあると思います）

• predict の出力を yes, no の列に変える

– 例えば、no の列をみて、要素が 0.5より大 であれば、"no" にそうでなければ、"yes"
にする。lapply が使えます。なお、結果は list になりますので、as.character を使って
character に変えます

– factor を、no の列（またはyesの列）に適用してもよい。labels を指定して、level の名
称を "yes" と "no" にする。

• 正解値（ no, yes を値とする列）を 0, 1 の列にし、predict の出力の no の列（yes
の列でもよい）が 0,1 の列であることを利用する。

なお、最も簡単な解は predict で, type="class" を指定することです。上の問題は「それをしない」
方法を考えてみようという、Rの練習問題です。

まとめ

• 決定木の作り方

– 分りやすく、使いやすい。誤差は大きめ。

– 構築には、greedy アルゴリズム

• ノードに置く属性の選択: 情報量増分
– 「増分比」が必要な局面がある。

• 復習: 情報量について

– 一つの発展形として、回帰木がある

– R では、tree, rpart を試してみた

