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知的情報処理
7. 過学習: すべてを鵜呑みにしてはい

けない

櫻井彰人

慶應義塾大学理工学部

本項の予定

• モデル選択

– 仮説の評価

• 過学習という問題

– 学習データの偏りとノイズ

– 学習（訓練）誤差と予測（汎化）誤差

– RとWekaで実感する

• 過学習対策

– 決定木作成時の例
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モデル選択

• データ分析の第一の目的は、データを生成し
た仕組みを推測すること

– 第二の目的は、その結果を行動に役立てること

• 「仕組み」は「モデル」

– 統計的には、「仮説」

• 従って、モデル選択＝仮説選択

• なお、選択範囲は、「仮説空間」
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• 過学習対策

モデルの評価

• 選択するには、評価する必要がある

• モデル（仮説）
– 決定木学習においては、一つの決定木

naïve Bayes学習なら、一つの「計算式」
（k-近傍法では、学習データ＋計算方法）

• 評価方法の要件
– 何らかの意味で「精度」や「信頼性」の高い仮説を用
いたい。

– 将来現れるデータに対しての値が欲しい

目立つモデルがあればよいが、世の中甘くない

http://www.selectioncriteria-examples.com/
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帰無仮説は、「陽性でない」
（陽性であることを示したいから）

第一種の過誤=棄却した(陽性だと言った)が、それは誤り
第二種の過誤=受理した(陰性だと言った)が、それは誤り

positiveと判定

第一種の過誤

第二種の過誤
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ROC curve

• Receiver operating characteristics
– “ROC”という用語はレーダが開発された当初、操
作盤上にあったノブの名

• http://www.math-koubou.jp/stata/files/r12/est006.pdf
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ROC curve  (“Receiver Operating Characteristics”)

ROC Curves
• 閾値（後述）を変えながら、サンプルの正誤を数える

• area under the curve (AUC) が大きい方がよい

• 異なった学習手法の性能を比較するのに適している
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どれを使おうか

• 以降では、正解率（precision）を使おう

– これは、分類問題のとき

– 0/1問題（0か1かに分類）であれば、

• 回帰（近似）問題では、誤差の二乗和を。
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何が問題か

• 目的は、予測誤差（汎化誤差）の減少

• ところが、これは測定できない
• 簡単に測れる数値は、学習誤差

• もし、「学習誤差減少」＝「予測誤差減少」であれ
ば、問題ない

• しかし、そうはならない。これが問題
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どういうことか

• いくつかの学習器を作って、学習誤差を測定
し、それが減少する順に並べたとしよう

• 仮に図のようになったとしよう。すなわち、学
習誤差が小さければ、
予測誤差が小さいとし
よう。

• 学習誤差が一番小さい
ものを選べばよい。
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ところが

• ところがそうはいかないのである。

• 図のようなことがよく
あるのである
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では、どうすればよいか

• 予測誤差が測定できないのでは、どうしようも
ない。

• そこで、近似する方法を考えよう。

– 一つは、validation set を用いる方法

– 一つは、cross validationを用いる方法

– 一つは、情報量基準を用いる方法

予測誤差とテスト誤差と訓練誤差

• （訓練データと同じ母集団から、同じ方法で抽出した）データに対
する、仮説出力値の、真の出力値に対する誤差・誤り率の期待値
が予測（汎化）誤差。

– 測定できないので、訓練データとは異なる（独立な）「テストデータ」を
用いて近似する

• なお、訓練誤差は、訓練データ（学習データ）に対する、仮説出力
値の、観測された出力値に対する誤差であった。式の形は、テスト
誤差と同じだが、使うサンプルが違う
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Elements of Statistical Learning

テスト誤差最小でよいか？

• テスト誤差最小の学習器を選んでよいか？
Yesである

• では、その分類器の予測誤差の推定として、
そのテスト誤差を使ってよいのか？
No である。

• なぜなら、その「テスト誤差」は学習に使って
しまっていたからである！！

どうするか？

• もう一組の（独立な）サンプルを用意して、それで誤差
を測定すればよい。これこそが、「テスト誤差」である。

• （誤差最小の）モデル・学習器を選択するのに用いた
誤差は、validation error と呼ばれる。

• 整理すると

Training set training error 学習に用いるデータセット・誤差

Validation set validation error モデル選択に用いるデータセット・誤差

Test set  test error 性能表示に用いるデータセット・誤差

目次
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過学習

 over-learning とか over-training と呼ばれる
 overfitting とも

http://www.staleytraining.com/articles/other/2010/avoid-overtraining.htm
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このあたりのことを言う

過学習 – なぜ起こるか

 学習すべきでないものまで、学習してしまう

 学習すべきでないもの
 学習データに含まれる偏り

 無限集合（真の概念が含む事例は無限個ある）の有限部分集合である
ため、かならず、偏りがある。

 学習データに含まれる誤り

 現実データにはノイズがある。分類クラスにも属性値にもノイズは存在す
る。

 学習してしまう
 学習能力が高いから

 調節可能なパラメータ数が多い

http://www.staleytraining.com/articles/other/2010/avoid-overtraining.htm

偏り

ノイズ

例: ノイズ・偏りの学習

http://en.wikipedia.org/wiki/File:TV_noise.jpg

http://news.softpedia.com/news/Human-Perception-
of-Gravity-Is-Biased-197339.shtml

ノイズ・偏りの学習: 関数近似

1次式
全点を通る
4次多項式2次多項式

真のモデルとデータ

パラメータ数 2 3 5

本格的な(?) 関数近似のデモ:  
http://www.mste.uiuc.edu/users/exner/java.f/leastsquares/

残差（学習誤差） 大 中 0

予測誤差 小 中 大
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target
degree-3 polynomial
degree-5 polynomial
degree-8 polynomialset.seed(123)

nData <- 10     # try 20 or 30 
x <- 2 * (runif( nData ) - 0.5)
noiseSD <- 0.1;
y <- sin(pi*x) + noiseSD*(rnorm(length(x)))
f <- function(x) sin(pi*x)

plot( f, xlim=c(-1,1), ylim=c(-1,1) )
points( x, y )

fit3a <- lm( y ~ poly(x, 3, raw=TRUE) )
fit3g <- function(x) predict( fit3a, data.frame( x=x ) )
par(new=T)
plot( fit3g, xlim=c(-1,1), ylim=c(-1,1), ylab="", xlab="", col="red" )

fit5a <- lm( y ~ poly(x, 5, raw=TRUE) )
par(new=T)
plot( function(u) predict( fit5a, data.frame( x=u ) ),

xlim=c(-1,1), ylim=c(-1,1), ylab="", xlab="", col="blue" )

par(new=T)
plot( function(u) predict( lm( y ~ poly(x, 8, raw=TRUE) ), data.frame( x=u ) ),

xlim=c(-1,1), ylim=c(-1,1), ylab="", xlab="", col="green" )

legend(par("usr")[1], par("usr")[4], 
c("target", "degree-3 polynomial", "degree-5 polynomial", "degree-8 polynomial"),
lwd=1,
col=c("black", "red", "blue", "green"),
)

プログラム例 ノイズ・偏りの学習: 決定木の例

Temp?

Hot CoolMild

9,11,15
[2+,1-]

15
[0+,1-]

No Yes

11
[1+,0-]

9
[1+,0-]

Yes
ノイズや偶然の規則性に
適合する可能性あり

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

概念 PlayTennis
の Boolean 決定木

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]

Yes

9,11
[2+,0-]

 既出例: 帰納した木

 訓練事例にノイズがあると

 事例 15: <Sunny, Hot, Normal, Strong, ->

• この例は実は noisy である. すなわち、正しいラベルは +

• 以前に作成した木は、これを、誤分類する

 決定木はどのように更新されるべきか (incremental learning を考える)?

 新しい仮説 h’ = T’ の性能は h = T より悪く なると予想される（ノイズに騙されているから！）

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

概念 PlayTennis
の Boolean 決定木

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]
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改めて： 学習誤差と予測（汎化）誤差

 学習（訓練）誤差

学習器は、学習データを完全に表現すべく努力したはず
だが、表現しきれずに残ってしまった誤差
 目標値（出力値）が離散値であれば、誤り数

 「完全に表現すべく」は、本当ではない。予測誤差（汎化）誤差を
減らす努力を、学習アルゴリズムに組み込むことがある。

学習終了時に求まる。データ一個あたりの平均値

 予測（汎化）誤差

学習器が作った器械（予測器）で予測する時の誤差

データの分布が分れば、理論的に計算可能。しかし、実
際に求めることはできない。データ一個あたりの期待値

目次
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– Precision, recall, confusion matrix etc.
• 何が問題か
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• 過学習
– 何となぜ
– 横軸は何にするか
– RとWekaによる実例

• 過学習対策

横軸は何にするか？

変な問いに聞こえますが

 右図の場合、学習器をその学習
誤差の降順に並べた。

 多項式近似の時は、多項式の次数とした。

 ｛一次多項式｝ ⊂ ｛二次多項式｝ ⊂ …
であることに注意。

機械学習では、仮説（モデル）の空間を、複雑さ（パラメー
タの数他）の順に並べたとき、
… ⊂ ｛複雑さが低い仮説｝⊂｛複雑さが高い仮説｝⊂ …
とする

このとき、仮説の複雑さを横軸にとれば、学習誤差はこの
軸にそって減少することになる
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http://www.svms.org/srm/

もう一つの軸
 学習に複数ステップを要する
場合がある

 ニューラルネットワークの
ように、少しずつ学習を進め
て行く場合

 Boostingのように、ステップ
ごとに複雑度を上げていく
（「複雑度」の軸と同じです）

http://jboost.sourceforge.net/doc.html

http://www.mathworks.co.jp/products/neural-network/examples.html?
file=/products/demos/shipping/nnet/fit_house_demo.html

問題を言い換えると

 問題なのは、

ある低複雑度の解（訓練誤差は大きい）と

ある高複雑度の解（訓練誤差は小さい）と

が得られているとき、

低複雑度の解の予測誤差が小さく

高複雑度の解の予測誤差が大きく

なること

 なお、複雑な解自体は問題ではない（問題かどうか
は分らない）

http://thefuturebuzz.com/2008/09/29/simplicity-vs-complexity/
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RとWekaでの実例
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library(nls2)
set.seed(1234)
x <- 1:20
y <- x+rnorm(20,sd=3)
plot(x,y)
xy <- data.frame(x=x,y=y)
res5 <- nls(y ~ a + b *x + c*x^2 + d *x^3 + e *x^4 + f*x^5, data=xy,
start=list(a=1,b=1,c=0.5,d=0.1,e=0.05,f=0.001))

curve((x),col=4,add=T)            # 青
lines(x,predict(res5),col=2)      # 赤

res1 <- nls(y ~ a + b *x , data=xy, start=list(a=1,b=1))
lines(x,predict(res1),col=3)      # 緑

R で試してみる非線形回帰

では、データ数を増やしたり、次数を上
げたりしたらどうなるだろうか？

赤の方がデータをよく表し
ているように見える

> # 学習誤差
> mean( (y-predict(res5) )^2)
[1] 5.808777
> mean( (y-predict(res1) )^2)
[1] 8.454419
> # 汎化誤差
> mean( (x-predict(res5) )^2)
[1] 3.544463
> mean( (x-predict(res1) )^2)
[1] 0.8988136

実験の仕方: Rでは

(iris.tr <- rpart(class~ ., iris, 
control=rpart.control(minsplit=1)) )

plot(iris.tr); text(iris.tr)

|petallength< 2.45

petalwidth< 1.75

petallength< 4.95

setosa    

Iris-versicolor Iris-virginica Iris-virgin

では、minsplit を 10, 20, 30, 50, 110 としたらどうなるだろうか？

http://www.hisuinosato.com/mt/archives/2008/06/post_656.html

または

library(rpart)
setwd("D:/R/Sample")
iris <- read.csv("07iris.csv", header=T)

(iris.tr <- rpart(class~ ., iris, 
control=rpart.control(minsplit=1, cp=0.01)) )

plot(iris.tr); text(iris.tr)

あやめのデータ

Weka では

07PlayTennis02.csv を読む
J48 で木を作成

あれ？ 分岐しない。
理由: 葉の最小データ（Obj)数が 2 以上

これを1以上にしてみよう

J48 で改めて木を作成

ところで、数字認識のデータ
library(rpart)
setwd("D:/R/Sample")
dig <- read.csv("05optdigits.tra.csv", header=F,

colClasses=c(rep("integer",64),"factor")
)
dig.test <- read.csv("05optdigits.tes.csv", header=F,

colClasses=c(rep("integer",64),"factor")
)
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参考: NBでは
library(e1071)
setwd("D:/R/Sample")
xy<-read.csv("05optdigits.tra.csv", 
header=F, colClasses="factor")

xyt<-read.csv("05optdigits.tes.csv",
header=F, colClasses="factor", 
as.is=TRUE)

tt<-as.data.frame(factor(xyt[,1],
levels=levels(xy[,1])))

for (i in 2:65) {
tt<-data.frame(tt,factor(xyt[,i],
levels=levels(xy[,i]))) 

}
names(tt)<-names(xy)

m <- naiveBayes(xy[,-65], xy[,65])

# accuracy for learning data
predictedClass <-predict(m, xy)
(cm <- table(xy[,65], predictedClass))
sum(diag(cm))/sum(cm)

> # accuracy for learning data
> predictedTrain <-predict(m, xy)
> (cm <- table(xy[,65], predictedTrain))

predictedTrain
0   1   2   3   4   5   6   7   8   9

0 372   0   0   0   3   0   1   0   0   0
1   0 368   8   0   0   0   0   1   1  11
2   0   1 358   0   0   0   0   2  12   7
3   0   1   1 372   0   1   0   5   4   5
4   0   4   0   0 357   0   3  15   3   5
5   0   1   1   2   2 342   1   0   1  26
6   0   3   0   0   1   0 373   0   0   0
7   0   2   0   0   2   0   0 380   1   2
8   1  11   0   0   2   0   1   0 363   2
9   0   4   1  11   9   2   0  11   3 341

> sum(diag(cm))/sum(cm)
[1] 0.9484698
> 
> # accuracy for test data
> predictedTest <-predict(m, tt)
> (cmt <- table(tt[,65], predictedTest))

predictedTest
0   1   2   3   4   5   6   7   8   9

0 172   0   0   0   4   1   1   0   0   0
1   0 152  15   0   0   1   1   0   1  12
2   0   7 154   2   0   1   0   1   7   5
3   0   1   1 158   0   2   0   8   5   8
4   0   2   0   0 171   0   0   4   3   1
5   0   0   0   1   2 168   1   0   0  10
6   0   4   0   0   2   0 175   0   0   0
7   0   0   0   0   6   0   0 169   0   4
8   0  13   1   1   1   3   0   2 142  11
9   0   2   1   4   6   4   0   2   5 156

> sum(diag(cmt))/sum(cmt)
[1] 0.899833

rpart では
for (cp in c(0.07,0.05,0.03,0.01,0.003,0.001,0.0003,0.0001,0.00003)) {
dig.tr <- rpart(V65~ ., dig,  control=rpart.control(minsplit=3, cp=cp)) 
tbl <- table(dig[,65],predict(dig.tr, dig, type="class"))
err.train <- 1 - sum(diag(tbl))/sum(tbl)
tbl <- table(dig.test[,65],predict(dig.tr, dig.test, type="class"))
err.test <- 1 - sum(diag(tbl))/sum(tbl)
print(c(cp, err.train, err.test))

}
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[1] 0.0700000 0.5553230 0.5720646
[1] 0.0500000 0.3876537 0.4162493
[1] 0.0300000 0.3212137 0.3516973
[1] 0.0100000 0.2312320 0.2576516
[1] 0.0030000 0.1148313 0.2092376
[1] 0.00100000 0.06251635 0.16583194
[1] 0.00030000 0.02615747 0.14468559
[1] 0.000100000 0.006016218 0.143016138
[1] 0.000030000 0.005493068 0.142459655

複雑度
訓練誤差

汎化誤差

実際の決定木

|

cp=0.001

|

cp=0.0001

0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00

0
.0

0.
2

0
.4

0
.6

0
.8

1.
0

cp in rpart

er
r.

tra
in

 &
 e

rr
.te

st

|V37=a

V61=cdefghiklmnopq

V43=abjkln

V27=abjklmno

V52=ghi V22=abj

V21=i

V22=bcdefghijklmnopq

V59=a

0

2 3 5

1 9
4 8

6

7

cp=0.03

|V37=a

V61=cdefghiklmnopq

V43=abjkln

V27=abjklmno

V52=ghi V22=abj

V22=bcdefghijklmnopq

0

2 3 5 9

8 6

7

cp=0.05

5e-02 1e-02 2e-03 5e-04 1e-04

0
.0

0.
2

0.
4

0.
6

0.
8

1
.0

cp in rpart

e
rr

.tr
ai

n 
&

 e
rr

.te
st

（片対数）

過学習は、一筋縄ではいかない

 ランダムなデータを「学習してしまう」こともある。

テストをすれば、かなり安心できる

 過学習で、汎化能力が低下することもある

 過学習は、実際には起こっていなこともある

今回のOCRデータのように、条件を整備して作成したデー

タであり、かつ十分なデータ数があれば、過学習はおこり
にくい。

何が問題か？ （続）

 つまり、

訓練誤差の大きさと予測誤差の大きさの逆転現象
が起こりうることが問題

 補足

通常は、「訓練誤差の大・小≒予測誤差の大・小」と考え
る（考えたい）

複雑度が大きいときにこの逆転現象が発生する可能性
がある

ちょっと脱線: 実用上の問題点

 テストデータ（validation data）がないときどうしよ
う？

 （はっきりとは言わなかったが、これまで）テストデータを
用いて、予測誤差の推定をしてきた
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そこで、cross validation

 学習データを２つに分ける。一部を学習に、一部を
テストに用いる
テストデータによる誤差を、予測誤差の推定値とする

 それを何回か繰り返し、「予測誤差の推定値」の平
均値をとる

 「繰り返す」時に、システマティックに行おう。
学習データを、予め、k 等分し、その一個をテストに、残り

k-1 個を学習に用いよう。それを k 回繰り返そう

良い点： どのデータも一回だけテストデータになる。それ
を用いて、全体の正解率や、confusion matrix とすること
ができる

k 重クロスバリデーション
k-fold cross validation

訓練データを 群に分け、 群で学習し、
残りで予測誤差を計測する。これを全ての

種類の組み合わせに対して行なう

万能ではないが、多くの場合に結構うまくいく

k )1( k

k

テスト用学習用

アルゴリズムや構造の適切さを測ることになる

再掲

構造や構造のパラメータ（複雑度）を決める目的で用いる

Weka: デフォールトが 10-fold CV

最小データ数（minNumObj）が2のとき:

最小データ数（minNumObj）が1のとき:

あやめのデータで試してみよう

COM実験で行ったように、

R で 10-fold cross validation

setwd("D:/R/Sample")
iris <- read.csv("07iris.csv", header=T)

library(bootstrap)               # crossval will be used
theta.fit <- function (x,y) { 
tmp <- data.frame( sepallength=x[,1], sepalwidth=x[,2],

petallength=x[,3], petalwidth=x[,4], class=y)
return( rpart(class~., tmp, control=rpart.control(minsplit=30) ) )

}
theta.predict <- function( fit, x) {predict( fit, data.frame(x), type="class" ) }
results <- crossval(iris[,-5],iris[,5], theta.fit, theta.predict, ngroup=10) 
(cm <- table( iris[,5], results$cv.fit ))
(accuracy <- sum(diag(cm))/sum(cm))

パッケージ bootstrap 中の crossval を用いる
使い方が少々面倒なので、プログラム全体を記す。
iris データに rpart を minsplit=30 で行った結果である。

> (cm <- table( iris[,5], results$cv.fit ))

1  2  3
Iris-setosa     50  0  0
Iris-versicolor  0 47  3
Iris-virginica   0  6 44

> (accuracy <- sum(diag(cm))/sum(cm))
[1] 0.94

分割はランダムに行われるので、実験ご
とに結果は異なっても不思議ではない。

なお、全データで学習した結果の学習誤差は次のようにして
求めることができる。

> m <- rpart(class~., iris, control=rpart.control(minsplit=30) ) 
> predicted <- predict( m, iris, type="class" )
> correct <- iris[,5]
> (cm <- table( correct, predicted ) )

predicted
correct           Iris-setosa Iris-versicolor Iris-virginica
Iris-setosa              50               0              0
Iris-versicolor           0              49              1
Iris-virginica            0               5             45

> (accuracyTraining <- sum(diag(cm))/sum(cm))
[1] 0.96

m <- rpart(class~., iris, control=rpart.control(minsplit=30) ) 
predicted <- predict( m, iris, type="class" )
correct <- iris[,5]
(cm <- table( correct, predicted ) )
(accuracyTraining <- sum(diag(cm))/sum(cm))

R で試す決定木のCV

library(rpart)
setwd("D:/R/Sample")
xy <- read.csv("07PlayTennis02.csv", header=T)

library(bootstrap)               # crossval を使用する
theta.fit <- function (x,y) { 
tmp <- data.frame( Outlook=x[,1], Temperature=x[,2],

Humidity=x[,3], Windy=x[,4], class=y)
return( rpart(class~., tmp, control=rpart.control(minsplit=1) ) )

}
theta.predict <- function( fit, x) {predict( fit, data.frame(x), type="class" ) }
results <- crossval(xy[,-5], xy[,5], theta.fit, theta.predict, ngroup=7) 
(cm <- table( xy[,5], results$cv.fit ))
(accuracy10CV <- sum(diag(cm))/sum(cm))

下記の方法で CV ができる（ngroupがCV時の分割個数を表す）

決定木の複雑さを制御するパラメータは minisplit であるので、これを変えて、CV を試み
る。なお、本例では、7-fold CV とした
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目次

• モデル選択
• モデルの評価

– Precision, recall, confusion matrix etc.
• 何が問題か

– 学習誤差と予測誤差の乖離

• 過学習
– 何となぜ
– 横軸は何にするか
– RとWekaによる実例

• 過学習対策

過学習対策

• 一つの方法

– 予測（汎化）誤差の推定値が最も小さいところ（複
雑度、学習回数）の学習器を使う

• Validation set を用いる。Cross validation を行う

• 他の方法

– 情報量基準に基づいて
最適な複雑度を推定す
る。

決定木の場合の少々異なる方法
Reduced-Error Pruning

 Reduced-Error Pruning によるテスト誤差の減少

 節を刈ることによってテスト誤差が減少する

 注:  Dvalidation は Dtrain と Dtest のどちらとも異なる

 賛成論 と 批判論

 賛成: 最も正確な T’ (T の部分木) のうちで最小のものが生成できる

 批判: T を作るのにわざわざデータ量を減らしている

• Dvalidation をとりおくだけの余裕があるか? 

• データ量が十分でなければ, 誤差をなおさら大きくする (Dtrain が不十分)

Size of tree (number of nodes)
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0.9
0.85
0.8
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0.65
0.6
0.55
0.5

On training data

On test data

Post-pruned tree
on test data

まとめ

 過学習
学習に使う構造（のパラメータ数）が大きすぎたり、構造が
複雑すぎたりすると、学習データの偏りやノイズまで学習
してしまう（ことがある）

データ数が与えられえいるなら、パラメータ数を変えて最
適なものを選ぶ

その時、予測誤差（の推定値）が重要

予測誤差の推定値は、cross validation で求める

 学習ツール・アルゴリズムは、学習前・学習後に、
様々な方法を用いて、過学習が起こりくい工夫はし
ている。

本日の課題

 「では、過学習の数値例を」では、2つの正規分布を２つのク
ラスに割り当てました。この課題では、一つの一様分布（正
方形の中の一様分布）と一つの正規分布（その正方形の中
心に平均値があり、分散は適度に小さい正規分布）とをそれ
ぞれのクラスとすることを考えましょう。
この２つの分布に対して、過学習が発生するかをRで実験し
てみて下さい。
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