
1

8. 決定木に関する演習

決定木の学習を通して、
過学習を理解しよう

本項の内容・目標

• 決定木を作ってみて、理解する。

– 何をいまさら、かもしれませんが、

– 一度、ゆっくり、演習をしてみよう、というわけです

• Cross validation を行ってみる

• 過学習について、過学習を起こさせてみて、
理解する

目次

• 誤差の話

• 木の作り方

• Cross validation

• 過学習の例

まずは、誤差の話

• 学習誤り・訓練誤り・学習誤差・訓練誤差

– 学習したが、誤りが残る場合、その量

– ただし、その「量」の測り方には、いろいろある

– 今回は、基礎的なものを用いる

– 回帰の場合： 絶対値誤差、二乗誤差

– 分類の場合： 0-1誤差

– 誤差といわず、ロスということもある

学習誤差： 回帰の場合

教師

予測

誤り

絶対値誤差

測り方

| 教師値 – 予測値 |

二乗誤差

（ 教師値 – 予測値 ）2

それぞれの値の平均値を
用いる

5 10 15 20

0
5

1
0

1
5

2
0

2
5

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0
.4

0.
6

0
.8

1
.0

x

y

学習誤差： 分類の場合

赤領域 青領域

教師データ

学習した、境界

分類誤り 測り方（数え方）

confusion matrix

真の赤

真の青

予
測
の
赤

予
測
の
青

8 4

71

精度= (8+7)/(8+7+4+1)

2

テスト誤差： 回帰の場合

1. 真の回帰曲線を知っている場合

理論的に計算できるなら、勿論、計算する。
計算できないなら、サンプル点をとって近似的に求める

5 10 15 20

0
5

1
0

1
5

2
0

2
5

x

y

こうした範囲で、例えば、
（教師値 –予測値）2を積分する こういった点をたくさん取って、例えば、

（教師値 –予測値）2の平均値を求める

テスト誤差： 回帰の場合

2. 真の回帰曲線を知らない場合

学習用のデータを、学習に用いる部分とテストに用いる部分とに分ける。
そして、テスト用部分で、誤差を計算する

5 10 15 20

0
5

10
15

20
25

x

y

こうして、テストデータに対
して誤差を、そしてその平
均値を求める

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0.
6

0.
8

1.
0

x

y

テスト誤差: 分類の場合

1. 真のデータ分布を知っている場合

理論的に計算できるなら、勿論、計算する。
計算できないなら、サンプル点をとって近似的に求める

この領域にデータ点が
来る確率を計算する

この領域にあるデータ点
の数を数える

テスト誤差: 分類の場合

2. 真の分類境界を知らない場合

学習用のデータを、学習に用いる部分とテストに用いる部分とに分ける。
そして、テスト用部分で、誤差を計算する

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0.
6

0.
8

1.
0

x

y

confusion matrix

真の赤

真の青

予
測
の
赤

予
測
の
青

5 6

90

精度= (5+9)/(5+9+6+0)

汎化誤差

汎化誤差とは、真の回帰曲線・分類境界に対する誤差です。

したがって、前のスライドの「テスト誤差」で「真の回帰曲線・分類境界が分
かっている場合の、テスト誤差になります。

問題解決、ではありません。

実データにおいては、真の回帰曲線・分類境界が分かっていることはほとん
どないからです。

そこで、通常は、
汎化誤差 ≒ テスト誤差（真の回帰曲線・分類境界が分かっていない場合）
と考えるわけですが、それでいいのでしょうか？

その推定精度はどのくらいなのでしょうか？
また、テストデータ数はどのくらい用意すればよいのでしょうか？

汎化誤差とテスト誤差

5 10 15 20

0
5

10
15

20
25

x

y

こうした範囲で、例えば、
（教師値 –予測値）2を積分する

3

汎化誤差とテスト誤差

この領域にデータ点が
来る確率を計算する

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0.
6

0.
8

1.
0

x

y

汎化誤差の推定

前のスライドに書きましたように、
1. テストデータを用いて、テスト誤差を計測し、
2. それを汎化誤差の推定値にする
という方針をとります。

汎化誤差を良く推定するためには、テストデータが多い方がよい。
しかし、学習をよくするには、学習データが多い方がよい。
trade-off です。

この trade-off を緩和する一つの方法に cross-validation があります

目次

• 誤差の話

• 決定木の作り方

• Cross validation

• 過学習の例

決定木の構築

• R には、決定木関連のパッケージとして、
tree、 rpart、 及び rpart を多変量回帰木
(multivariate regression trees)に拡張させた
mvpart がある。

分類木の例（tree）
library(tree)
data(iris)
(iris.tr<-tree(Species~.,data=iris))
plot(iris.tr,type="u"); text(iris.tr)

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor

virginica virginica virginica

(iris.tr1<-snip.tree(iris.tr,nodes=c(12,7)))
plot(iris.tr1,type="u");text(iris.tr1)

1) root 150 329.600 setosa (0.33333 0.33333 0.33333)
2) Petal.Length < 2.45 50 0.000 setosa (1.00000 0.00000 0.00000) *
3) Petal.Length > 2.45 100 138.600 versicolor (0.00000 0.50000 0.50000)
6) Petal.Width < 1.75 54 33.320 versicolor (0.00000 0.90741 0.09259)
12) Petal.Length < 4.95 48 9.721 versicolor (0.00000 0.97917 0.02083)
24) Sepal.Length < 5.15 5 5.004 versicolor (0.00000 0.80000 0.20000) *
25) Sepal.Length > 5.15 43 0.000 versicolor (0.00000 1.00000 0.00000) *

13) Petal.Length > 4.95 6 7.638 virginica (0.00000 0.33333 0.66667) *
7) Petal.Width > 1.75 46 9.635 virginica (0.00000 0.02174 0.97826)
14) Petal.Length < 4.95 6 5.407 virginica (0.00000 0.16667 0.83333) *
15) Petal.Length > 4.95 40 0.000 virginica (0.00000 0.00000 1.00000) *

|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

setosa

versicolor virginica

virginica

tree ライブラリの使い方

枝刈りの仕方

分類木の例（tree）
library(tree)
iris.label<-c("S", "C", "V")[iris[, 5]]
plot(iris[,3],iris[,4],type="n")
text(iris[,3],iris[,4],labels=iris.label)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)

1 2 3 4 5 6 7

0
.5

1
.0

1
.5

2
.0

2
.5

iris[, 3]

ir
is

[,
4

]

SSS SS

S
S
SS
S
SS

SS
S

SS
S SS

S

S

S

S

SS

S

SS SS

S

S
SSSS
S

S S
SS
S

S

S
S

SSSS

C
C C

C

C

C

C

C

C
C

C

C

C

C
C

C
C

C

C

C

C

C

C

C
C
C C

C

C

C
C

C

C

C
C
C

C

CCC
C

C

C

C

C
C
CC

C

C

V

V

V

V

V
V

V
VV

V

V
V

V
V

V
V

V

V
V

V

V

V V

V

V

VVV

V

V

V
V

V

V
V

V
V

VV

V

V
V

V

V

V

V

V
V

V

V

setosa

versicolor virginica

virginica

決定木がどう領域を分
割して判断しているか
が分かる図。treeパッ
ケージでしかできない

4

回帰木の例（tree）

> library(tree)
> data(cars)
> cars.tr<-tree(dist~speed,data=cars)
> print(cars.tr)
node), split, n, deviance, yval

* denotes terminal node

1) root 50 32540.0 42.98
2) speed < 17.5 31 8307.0 29.32
4) speed < 12.5 15 1176.0 18.20
8) speed < 9.5 6 277.3 10.67 *
9) speed > 9.5 9 331.6 23.22 *

5) speed > 12.5 16 3535.0 39.75 *
3) speed > 17.5 19 9016.0 65.26
6) speed < 23.5 14 2847.0 55.71 *
7) speed > 23.5 5 1318.0 92.00 *

> plot(cars.tr,type="u")
> text(cars.tr)
> plot(cars.tr,type="u")
> text(cars.tr)
>

library(tree)
data(cars)
cars.tr<-tree(dist~speed,data=cars)
print(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)

|
speed < 17.5

speed < 12.5

speed < 9.5

speed < 23.5

10.67 23.22

39.75 55.71 92.00

回帰木の例（tree）

(cars.tr1<-prune.tree(cars.tr,best=4))
plot(cars.tr1); text(cars.tr1,all=T)

plot(cars$speed,cars$dist)
partition.tree(cars.tr1,add=T,col=2)

|
speed < 17.5

speed < 12.5 speed < 23.5

42.98

29.32

18.20 39.75

65.26

55.71 92.00

5 10 15 20 25

0
20

40
6

0
80

1
00

12
0

cars$speed

ca
rs

$d
is

t

グラフのようにあらわしたもの

では、別のデータで

• 例によって、テニスのデータを用いてみよう

• このデータの特徴は、すべての属性が離散
値であること Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

> setwd("D:/R/Sample")
> playTennis <- read.csv(“08PlayTennis.csv", header=T)
> (playTennis.tr<-tree(Play~.,data=playTennis))
node), split, n, deviance, yval, (yprob)

* denotes terminal node

1) root 14 18.250 Yes (0.3571 0.6429)
2) Humidity: High 7 9.561 No (0.5714 0.4286) *
3) Humidity: Normal 7 5.742 Yes (0.1429 0.8571) *

> plot(playTennis.tr); text(playTennis.tr)

|
Humidity:a

No Yes

これは失敗と言っていいでしょう。なぜこうなってしまったのでしょうか？
それは、枝分かれするときの条件が厳しく（つまり、枝分かれしないようい）なっているからです。
それ（つまり、制御の仕方）を調べてみましょう。
?tree
として下さい。"tree" の説明書が得られます。しかし、木を生成するときの制御の仕方についての
記述は見つかりません。こういうときは、control というキーワードを探してみます。下の方に
control.tree という文言があります。ここをクリックするか

?control.tree
としてみてください。tree.control(nobs, mincut = 5, minsize = 10, mindev = 0.01) が制御方法
であり、default値であることが分ります。多少試行錯誤すると、今回は、mincut = 1, minsize = 2
が最小値、つまり、最も木が発達しやすいパラメータであることが分ります。そこで、
tree.control(length(playTennis[,1]), mincut = 1, minsize = 2)
としてみますが、結果は変わりません。
理由は分りません。
やむをえず、別のライブラリを使うことにします。

library(tree) としたあと

説明が必要です。なお、漢字もOK

> library(rpart)
> setwd("D:/R/Sample")
> playTennis <- read.csv(“08PlayTennis.csv", header=T)
> (playTennis.tr <- rpart(Play~ ., playTennis))
n= 14

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 14 5 Yes (0.3571429 0.6428571) *
> plot(playTennis.tr); text(playTennis.tr)
以下にエラー plot.rpart(playTennis.tr) : fit is not a tree, just a root

これはもっと悪い。枝分かれせず、根のみとなってしまった。
先ほどと同様に
?rpart
としてみましょう。今度は引数に control というものがあります。下の例題を見ると、rpart.control を使えばよいこと
が分ります。rpart.control をクリックするか ?rpart.control としてみましょう。Minsplit を小さくすれば良さそうなこと
が想像できます。試してみましょう。

> library(rpart)
> setwd("D:/R/Sample")
> playTennis <- read.csv(“08PlayTennis.csv", header=T)
> (playTennis.tr <- rpart(Play~ ., playTennis,
+ control=rpart.control(minsplit=1)))
n= 14

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 14 5 Yes (0.3571429 0.6428571)
2) Outlook=Rainy,Sunny 10 5 No (0.5000000 0.5000000)
4) Humidity=High 5 1 No (0.8000000 0.2000000)
8) Outlook=Sunny 3 0 No (1.0000000 0.0000000) *
9) Outlook=Rainy 2 1 No (0.5000000 0.5000000)
18) Windy=True 1 0 No (1.0000000 0.0000000) *
19) Windy=False 1 0 Yes (0.0000000 1.0000000) *

5) Humidity=Normal 5 1 Yes (0.2000000 0.8000000)
10) Windy=True 2 1 No (0.5000000 0.5000000)
20) Outlook=Rainy 1 0 No (1.0000000 0.0000000) *
21) Outlook=Sunny 1 0 Yes (0.0000000 1.0000000) *

11) Windy=False 3 0 Yes (0.0000000 1.0000000) *
3) Outlook=Overcast 4 0 Yes (0.0000000 1.0000000) *

> plot(playTennis.tr); text(playTennis.tr)

|Outlook=bc
Humidity=a

Outlook=c
Windy=b

Windy=b

Outlook=b
No

No Yes No Yes

Yes

Yes

今度はうまく行ったようである。では、未知データがどう分類されるか見てみよう。
"predict" について rpart の説明書中には記述がない。
こういったときは、 ?predict.rpart としてみる（つまり、クラス rpart のメソッド predict）。
パッケージ e1071の naiveBayes とは異なり、次のように簡単にテストできる。

playTennisTest02 <- read.csv(“08PlayTennisTest02.csv",header=TRUE)
predict(playTennis.tr, PlayTennisTest02)

5

> playTennisTest02 <- read.csv(“08PlayTennisTest02.csv",header=TRUE)
> predict(playTennis.tr, playTennisTest02)

No Yes
[1,] 1 0
[2,] 0 1
> playTennisTest02
Outlook Temp. Humidity Windy Play

1 Sunny Cool High True No
2 Rainy Mild Normal False Yes

結果は勿論、想定通り。なお、パラメータに type があり、確率値の出力が可能なように書かれ
ているが、どうもそうではない。

> predict(playTennis.tr, playTennisTest02, type="prob")
No Yes

[1,] 1 0
[2,] 0 1
> predict(playTennis.tr, PlayTennisTest02, type="matrix")

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 0 1 0
[2,] 2 0 3 0 1

気がついたかもしれませんが、tree も rpart も 2分木しか作りません。
その点では、weka の J48 の方がよくできています。

今日の課題１

• Naïve Bayes のときの「今日の課題」とデータは同じです。

• rpart を用いて、下図左の訓練データが与えられたとき、下図
右のテストデータの属性「スキー」の値を推定せよ。

• Rを使ってください。応答変数の属性名は スキー になります。

雪 天気 シーズン 体調 スキー

ベタ 霧 ロー 回復 no
新雪 晴 ロー 回復 yes
新雪 霧 ロー 回復 yes
ざらめ 霧 ロー 怪我 no
新雪 晴 ロー 怪我 no
ベタ 晴 ロー 回復 yes
新雪 霧 ロー 回復 yes
ベタ 晴 半ば 回復 yes
新雪 晴 ハイ 回復 yes
新雪 風 ロー 回復 yes
ざらめ 霧 半ば 回復 no
新雪 風 ロー 回復 yes
新雪 晴 半ば 回復 yes
ざらめ 風 ハイ 疲労 no

雪 天気 シーズン 体調 スキー

ベタ 風 半ば 疲労 ?

目次

• 誤差の話

• 木の作り方

• Cross validation

• 過学習の例

k 重クロスバリデーション
k-fold cross validation

訓練データを 群に分け、 群で学習し、
残りで予測誤差を計測する。これを全ての

種類の組み合わせに対して行なう

万能ではないが、多くの場合に結構うまくいく

k)1(k

k

テスト用学習用

予測誤差の計測値を、ここでは、汎化誤差と呼ぶことにする

再掲

Weka: デフォールトが 10-fold CV

最小データ数（minNumObj）が2のとき:

最小データ数（minNumObj）が1のとき:

あやめのデータで試してみよう

COM実験で行ったように、

R で 10-fold cross validation (1)

setwd("D:/R/Sample")
iris <- read.csv("07iris.csv", header=T)

library(rpart)
n <- nrow(iris); K <- 10 # number of samples and folds

size <- n %/% K # size of bins is "size" or "size"+1)
rnk <- rank(runif(n)) # this gives a permutation of 1 to n
block <- (rnk - 1) %/% size + 1 # converts rnk to group numbers

all.pred <- NULL
for (k in 1:K) {
iris.tr <- rpart(class ~ . , iris[block != k,],

method="class", control=rpart.control(minsplit=30))
pred <- predict(iris.tr, iris[block==k,], type="class")
all.pred <- rbind(all.pred,

data.frame(id=(1:n)[block==k], pred=pred))
}

all.pred.sorted <- all.pred[sort.int(all.pred$id, index.return=T)$ix,]
(all.cm <- table(iris$class, all.pred.sorted$pred))
(error <- 1 - sum(diag(all.cm))/sum(all.cm))

パッケージ bootstrap などが使えるが、今回は、自分で作る
iris データに rpart を minsplit=30 で行った結果である。

分割はランダム
とに結果は異な

プログラムファイルを参照のこと

次のスライド参照. 第kグループ以外のサン
プルを用いて学習する

第kグループに対し、予
測する

予測結果を、サンプル番号とと
もに蓄積していく

6

R で 10-fold cross validation (2)

> (all.cm <- table(iris$class, all.pred.sorted$pred))

Iris-setosa Iris-versicolor Iris-virginica
Iris-setosa 50 0 0
Iris-versicolor 0 46 4
Iris-virginica 0 7 43

> (error <- 1 - sum(diag(all.cm))/sum(all.cm))
[1] 0.07333333

パッケージ bootstrap などが使えるが、今回は、自分で作る
iris データに rpart を minsplit=30 で行った結果である。

分割はランダムに行われるので、実験ご
とに結果は異なっても不思議ではない。

> block
[1] 10 4 1 1 3 9 3 10 2 5 2 3 8 1 5 1 6 1 10 3 7 3 10 10 10
[26] 1 7 5 10 4 7 3 2 2 4 9 5 8 9 5 9 4 8 4 10 3 1 9 10 10
[51] 6 7 8 7 8 4 2 2 4 3 2 5 8 7 6 7 5 5 3 4 3 6 9 6 1
[76] 6 5 5 6 10 9 9 3 8 4 1 1 8 4 4 3 1 10 2 7 6 6 4 9 2

[101] 4 5 5 4 7 3 10 1 8 2 7 4 1 8 6 7 6 8 2 9 6 5 6 2 7
[126] 3 8 2 6 1 9 8 8 5 9 7 9 9 8 9 7 5 2 6 3 7 2 10 1 10

参考

iris[block!=1] は、上記の1以外の場所のみ iris 要素を取り出したもの

なお、全データで学習した結果の学習誤差は次のようにして
求めることができる。

> iris.tr <- rpart(class ~ . , data=iris, method="class")
> pred <- predict(iris.tr, newdata=iris,
+ type="class", control=rpart.control(minsplit=30))
> cm <- table(iris$class, pred)
> print(cm)

pred
Iris-setosa Iris-versicolor Iris-virginica

Iris-setosa 50 0 0
Iris-versicolor 0 49 1
Iris-virginica 0 5 45

> err.iris.tr <- 1 - sum(diag(cm))/sum(cm)
> print(err.iris.tr)
[1] 0.04

iris.tr <- rpart(class ~ . , data=iris, method="class")
pred <- predict(iris.tr, newdata=iris,

type="class", control=rpart.control(minsplit=30))
cm <- table(iris$class, pred)
print(cm)
err.iris.tr <- 1 - sum(diag(cm))/sum(cm)
print(err.iris.tr)

R で試してみる決定木のCV: 実験

0.06666667
0.06666667
0.06666667
0.00000000
0.06666667
0.00000000
0.00000000
0.26666667
0.13333333
0.06666667

minsplit=1, K=10
のときのある結果
（誤り率）

平均 0.0733

0.06666667
0.00000000
0.06666667
0.00000000
0.13333333
0.00000000
0.00000000
0.26666667
0.13333333
0.06666667

minsplit=50, K=10
のときのある結果
（誤り率）

平均 0.0733

0.06666667
0.00000000
0.06666667
0.00000000
0.06666667
0.00000000
0.00000000
0.26666667
0.06666667
0.06666667

平均 0.060

minsplit=5, K=10
のときのある結果
（誤り率）

データは iris
複数回（下記の例では10回） 10-fold CV を行ったの
は、データの組合わせ方で結果が異なるからである。

R で試してみる決定木のCV: 最適木？

|Outlook=bc

Temperature=b

Humidity=a

Outlook=c

Windy=b

Windy=b

Outlook=b

No

No

No Yes No Yes

Yes

Yes

|Outlook=bc

Temperature=b

Humidity=a
No

No Yes

Yes

|Outlook=bc

Temperature=b

Humidity=a

Outlook=c

Windy=b

Windy=b

Outlook=b

No

No

No Yes No Yes

Yes

Yesminsplit=2

minsplit=1

minsplit=5

全データを用いて作成した木達
（データは、 07PlayTennis02.csv ）

Weka で CV を繰り返すには

• データ分割の仕方（乱数で決められている）を
変えるには、乱数のシードを変えればよい。
Wekaでは次のようにすればよい

これを変える

本日の課題2
• 08heart.csv を対象として、10-fold cv を行って下さ
い。応答変数は disease です。
– なお、08heart.csv は、

http://archive.ics.uci.edu/ml/datasets/Heart+Disease
に基づいています

> print(as.numeric(all.err))
[1] 0.2962963 0.2222222 0.1481481 0.1481481 0.1851852 0.1851852
[7] 0.2962963 0.3333333 0.1111111 0.1851852

>
> ave.err <- t(all.err) %*% as.numeric(table(block)) / n
> print(as.numeric(ave.err))
[1] 0.2111111
>
> all.pred.sorted <- all.pred[sort.int(all.pred$id, index.return=T)$ix,]
> (all.cm <- table(heart$disease, all.pred.sorted$pred))

absence presence
absence 129 21
presence 36 84

結果の例

7

目次

• 誤差の話

• 木の作り方

• Cross validation

• 過学習の例

では、過学習の数値例を

0.500 0.200 0.050 0.020 0.005 0.002

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cp in rpart

er
r.

tr
ai

n
 &

 e
rr

.te
st

-4 -2 0 2 4

-4
-2

0
2

4

x

y

複雑度
訓練誤差

汎化誤差

実際の決定木

0.500 0.200 0.050 0.020 0.005 0.002

0
.0

0
.2

0
.4

0
.6

0.
8

1
.0

cp in rpart

e
rr

.tr
a

in
 &

 e
rr

.te
st

||
y>=0.4916

x>=-1.969 x>=0.395

x>=2.176

y>=-1.085

1 2

1
1 2

2

|y>=0.4916

1 2

cp=0.2 cp=0.02 cp=0.002

library(rpart)

n.train <- 200
n.test <- 200

sd <- 1.5

train1 <- data.frame(
x=rnorm(n.train, mean=1,sd=sd), y=rnorm(n.train, mean=1,sd=sd),
c=rep(as.factor(1),n.train))

train2 <- data.frame(
x=rnorm(n.train, mean=-1,sd=sd), y=rnorm(n.train, mean=-1,sd=sd),
c=rep(as.factor(2),n.train))

train <- rbind(train1, train2)

test1 <- data.frame(
x=rnorm(n.test, mean=1,sd=sd), y=rnorm(n.test, mean=1,sd=sd),
c=rep(as.factor(1),n.test))

test2 <- data.frame(
x=rnorm(n.test, mean=-1,sd=sd), y=rnorm(n.test, mean=-1,sd=sd),
c=rep(as.factor(2),n.test))

test <- rbind(test1, test2)

plot(subset(train, c==1)[,1:2], xlim=c(-5,5), ylim=c(-5,5))
points(subset(train, c==2)[,1:2], col="red", xlab="", ylab="")

データの生成

set.seed()

正規乱数は rnorm(個数, mean=平均, sd=標準偏差)
一様乱数は runif(個数, min=最小値, max=最大値)

res <- c()
for (cp in
c(0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.07,0.05,0.03,0.01,0.007,0.005,0.003,0.001))
{
t <- rpart(c~ .,train, control=rpart.control(minsplit=3, cp=cp))
tbl.train <- table(train$c, predict(t, train, type="class"))
err.train <- 1 - sum(diag(tbl.train))/sum(tbl.train)
tbl.test <- table(test$c, predict(t, test, type="class"))
err.test <- 1 - sum(diag(tbl.test))/sum(tbl.test)
print(c(cp, err.train, err.test))
res <- rbind(res, c(cp, err.train, err.test))

}

dev.new()

plot(res[,1:2],log="x", type="l",xlim=c(max(res[,1]),min(res[,1])),
ylim=c(0,1.0), xlab="cp in rpart",ylab="err.train & err.test")

points(res[,c(1,3)],type="l",col="red",xlab="",ylab="")

測定 本日の課題3

• 「では、過学習の数値例を」では、2つの正規分布を２つのク
ラスに割り当てました。この課題では、一つの一様分布（正
方形の中の一様分布）と一つの正規分布（その正方形の中
心に平均値があり、分散は適度に小さい正規分布）とをそれ
ぞれのクラスとすることを考えましょう。
この２つの分布に対して、過学習が発生するかをRで実験し
てみて下さい。

-0.5 0.0 0.5 1.0 1.5

-0
.5

0
.0

0
.5

1
.0

1
.5

x

y

-0.5 0.0 0.5 1.0 1.5

-0
.5

0
.0

0
.5

1
.0

1
.5

x

y

-0.5 0.0 0.5 1.0 1.5

-0
.5

0
.0

0
.5

1
.0

1
.5

x

y

8

本日の課題3α

分布を変えると、過学習の起こりやすさが変わるかどうか
みてみましょう。

本日の課題２は、

正規分布の平均と分散を、様々に、変えて、過学習が起こ
るかどうか調べて下さい
とします。

本日の課題3: 補足

rnorm(個数, mean=平均値, sd=標準偏差）

runif(個数)

散布図の表示範囲は、xlim=c(-3,3), ylim=c(-4,4)
のように記述します

