
1

知的情報処理

10.サポートベクターマシン

理工学部管理工学科

櫻井彰人

SVM の歴史

 SVM はVapnik の統計的学習理論から生まれた [3]
 SVM は1992年のCOLTで発表された（Boser, Guyon and Vapnik）[1]
 SVM は素早く普及した。手書き数字認識の精度が高かった

 SVMは1.1% のテスト誤り. これは、念入りに作ったニューラルネット
ワーク（LeNet 4）と同じくらいであった.
 参考: [2]のSection 5.11. [3]のdiscussion

 SVM は今では、カーネル法の代表的な例と見なされている
 注: カーネル（核関数, kernel）の意味はいくつもあるので、注意のこと

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on
Computational Learning Theory 5 144-152, Pittsburgh, 1992.

[2] L. Bottou et al. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82.

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.

暫定的な仮定: 線形分離可能 とはいえ、線形境界候補はたくさん

勿論、NO!

式で表すと

1x

2x

ax + by = c

ax + by > c

ax + by < c

クラス変数
y = 1

クラス変数
y = +1

一般に

1x

2x

0 bxw

0 bxw

0 bxw

1y

1y

2

再: 決定境界候補は複数ある

 （簡単のために）分類クラス
は2個、線形分離可能と仮
定。

 候補は多数（無限個）!
 Perceptron学習アルゴリズム
は、ある一つを見つける（初
期値やデータの提示順序依
存）

 他にもある

 どの候補も同様に良いの
か?

Class 1

Class 2

あまり芳しくない境界の例

Class 1

Class 2

Class 1

Class 2

 「芳しくない」と考えるのは、何故だと思い
ますか？

あまり芳しくない境界の例

Class 1

Class 2

Class 1

Class 2

一つの答え: 境界に近すぎる

では、境界に近すぎると、なぜ、芳しくないのか？

境界を離す

 決定境界を、どちらのクラスの点からも（公平に！）、でき
るだけ、離すことを考えよう

Class 1

Class 2

Class 1

Class 2

境界を離す: どの点について？

 同じクラス内なら、どの点を優先するか？公平に？

Class 1

Class 2

Class 1

Class 2

総和？自乗和？最大？最小？

境界を離す: 最近接点について

 同じクラス内の、境界に最も近い点を、できるだけ離そう。
境界への最短距離は、どのクラスも同じにしよう。

Class 1

Class 2

Class 1

Class 2

3

「マージン」の導入

 マージン（大辞林）

 (１)売買の差額金。利鞘(りざや)。
(２)販売手数料。
(３)本などの印刷部分を除く周辺の余白。

 今回は、「余白」が近いでしょう

Class 1

Class 2

Class 1

Class 2

P0

P2

P1

•P0: 任意の分離超平面
•P1: P0 に平行, あるクラス内でP0へ
の最近接点を通る
•P2: P0 に平行, 他のクラス内でP0へ
の最近接点を通る

マージン: 超平面 P1 と P2 の
間の垂直距離（垂線の長さ）

1x

2x

「マージン」の導入 その2

式で表すと

Class 1

Class 2

m
0 bxw

 bbxw

 bbxw

w
 
bb

m
w

Class 1

Class 2

m
0 bxw

1 bxw

1 bxw

w

2
m

w

改めて記述すると

 訓練データを {x1, ..., xn}, 各xi のクラスラベルを yi  {1,-1}
とする

 ちょっと工夫すると、決定境界は全ての訓練データを正しく分
類する 

 そうすると、欲しい決定境界は、次の制約付き最適化問題を
解けば求まる

 この解き方は、既に知っていますよね？

  1 byi ii xw

  1 subject to

2
 Maximize

 byi ii xw
w

  1 subject to
2

1
 Minimize

2

 byi ii xw

w

制約付き最適化問題の解法

 目的: 制約 g(x) = 0 のもと f(x) を最小化する

 x0 が解である必要条件:

 : ラグランジュ乗数 Lagrange multiplier
 制約が複数個 gi(x) = 0, i=1, …, m, のとき、ラグランジュ乗

数 i は各制約ごとに必要

 














0)(

0)()(
0

x

xx
x
g

gf
xx



 















mig

gf

i

xx
ii

m
i

,...,1for 0)(

0)()(
0

1

x

xx
x



制約付き最適化問題の解法

 制約が不等式 gi(x)0 で表されるときも同様。ただし、ラグラ
ンジュ乗数 i は正である必要がある

 もし x0 が次の制約付き最適化問題の解であるなら

 x0 が次の式を満足するような i0 (i=1, …, m) が存在する

 関数 はラグランジュ関数と呼ばれる

migf i ,..,1for 0)(subject to)(min xx
x

 















mig

gf

i

xx
ii

m
i

,...,1for 0)(

0)()(
0

1

x

xx
x



)()(xx iii gf 

4

元の問題は

 ラグランジュ関数は

 微分を 0 とおくと

  1 subject to
2

1
 Minimize

2

 byi ii xw

w

  
i

iii bybL)(1
2

1
),,(xwwwαw 






i
iii y

bL
xw

w

αw ),,(


i
ii yb

bL ),,(αw


i

iii y xw  
i

ii y0

  01 subject to
2

1
 Minimize

2

 byi ii xw

w

双対問題

 ラグランジュ関数に を代入すれば

 ただし、 を用いた

 これは i だけの関数である

 





 




































ji
jijiji

i
i

i
i

i
ji

jijiji
i

i
ji

jijiji

i
i

j
jjjii

j
jjj

i
iii

i
iii

yy

ybyyyy

byyyy

bybL

,

,,

2

1
2

1

)(1
2

1

)(1
2

1
),,(

xx

xxxx

xxxx

xwwwαw










i

iii y xw 

0
i

ii y

これは学習データである

双対問題

 新しい目的関数は、 i だけに関するものである

 双対問題である: wが分かれば i が分かる; i が分かればwが分かる

 元の問題は主問題と呼ばれる

 双対問題の目的関数は、最大化する

 従って、双対問題は:

ラグランジュ乗数を導入したときの i
の性質

ラグランジュ関数を b に関して微分して
（0とおいて）得た条件








i
iii

ji
jijiji

i
i

y

yyW

0,0 subject to

2

1
)(Maximize

,



 xxα

双対問題

 これは2次計画問題(QP; quadratic programming)
 i の大域的最適値を求めることが常に可能

 w は から求まる








i
iii

ji
jijiji

i
i

y

yyW

0,0 subject to

2

1
)(Maximize

,



 xxα


i

iii y xw 

解の性質

 i の多くはゼロ
 w は「少数の」データ点の線形結合

 このようなスパースな表現は、k-nn と同様に、データ圧縮とみなす
ことが可能である。

 非零の i に対応するxi は support vectors (SV) と呼ばれる
 決定境界は SV のみによって決まる

 tj (j=1, ..., s) を s 個の SV の添え字とする. そうすると

 未知のデータ z に対して

 を計算し、結果が負ならばク

ラス1とし、そうでなければクラス2とする

 注: w を明示的に構成する必要はない

 


s

j ttt jjj
y

1
xw 

byb
s

j ttt jjj
  

)(
1

zxzw 

2次計画

 多くの手法が提案されている

 その多くは内点法に属する

 制約を満たしていないかもしれない、初期点から開始する

 解（候補）を、目的関数を最適化方向に進めたり、満たしていない制約
の個数を減らしたりしながら、改善していく

 SVM については SMO (sequential minimal optimization) が良く知
られている（他にもいろいろ）

 2変数の QP はトリビアル

 SMO の繰り返しでは一対の (i,j) を取り、当該 QP をこの二変数につ
いて解く. この過程を収束するまで繰り返す

 実際には, QP 解法プログラムをブラックボックスと考え、どう解かれ
ているかは考えないことが多い

5

6=1.4

幾何的解釈

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0
7=0

8=0.6

9=0

10=0 w

0 bxw

1 bxw

1 bxw

線形分離可能でないとき
 分類において「誤り」 i を認めよう; 当該誤り値は決定関数

wTx+b の出力値に基づく

 i は分類を誤った事例の個数の近似となる（1より大の時、
分類誤り）

Class 1

Class 2

ix

jx

i

j

w

0 bxw

1 bxw

1 bxw

ソフトマージン

 ii が最小化されれば, i は:

 i はスラック変数である

 正しく分類されていれば i=0 である

 i は分類誤りの上界である

 最小化するのは

 C : 誤りとマージンのトレードオフを表すパラメータ

 最適化問題














i

yb

yb

i

iii

iii

0

1 if1

1 if 1





xw

xw




n

i iC
1

2

2

1 w

  0,1 subject to
2

1
 Minimize

1

2



  

iiii

n

i i

byi

C





xw

w

ここはスラック変数を導入していても、
不等式です。サポートベクトル以外の
データ点に対しては、不等式制約だ
からです

実際に計算するときには適宜設定
する必要がある。

    
i

ii
i

iiii
i

i byCbL )(1
2

1
),,(xwwwαw






i
iii y

bL
xw

w

αw ),,(


i
ii yb

bL ),,(αw


i

iii y xw  
i

ii y0

 
ji

jijiji
i

i yybL
,2

1
),,(xxαw 

主問題のラグランジアンは

従って、

となるゆえ、停留点は、

これらを主問題に戻せば

ii
i

C
bL 





),,(αw

iiC  0

ただし、条件は、


i

ii y0) allfor (0 iCi 

最適化問題

 この制約付き最適化問題の双対問題は

 w は

 これは、線形分離可能な場合とそっくりである。違いは、
各i に C という上限があることである

 同様に、QP solver 用いて解く








i
iii

ji
jijiji

i
i

y

yyW

0,0C subject to

2

1
)(Maximize

,



 xxα

 


s

j ttt jjj
y

1
xw 

線形 SVM: まとめ

 分類器は、分離超平面 separating hyperplane.

 最も重要な訓練データ点がサポートベクターとなる; それが当該超平面を決
める.

 ２次計画問題を解けば、どの点 xi がサポートベクターで非零のラグランジュ
乗数 αi に対応するかが分かる.

 当該問題の双対問題においても解法においても、訓練データ点は、内積の
中にしか現れない:

次のような α1…αN を見出せ:
最大化: Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj , 但し

(1) Σαiyi= 0
(2) すべての αiにつき: 0 ≤ αi≤ C

f(x) = Σαiyixi
Tx + b

6

非線形 SVM
 線形分離可能なデータに対しては、少々のノイズがあっても、うまくいく:

 しかし、データ集合が線形分離可能でなかったらどうしよう?

 例えば… データをより高次元の空間に写像したらどうだろうか:

0

x2

x

0 x

0 x

非線形 SVM: 特徴空間

 一般的なアイデア: もともとの特徴空間は、いつで
も、ある高次元特徴空間に写像すれば、線形分離可
能となる:

Φ: x→ φ(x)

しかし、非線形関数は計算コストが大きい。また、勝手
な変換では汎化能力が出るとは思えない

カーネルトリック “Kernel Trick”
 線形分類器が依拠していたのは、ベクター間の内積 K(xi,xj)=xi

Txj

 もし各点を高次元空間に、変換 Φ: x→ φ(x) を用いて写像すると, その高次元空
間内での内積は:

K(xi,xj)= φ(xi) Tφ(xj)
 カーネル関数は、変換後の内積の値が、変換前の内積の関数となるようなもの.

 そうなると、計算が楽（計算量が少ない）

 例:
2-次元ベクトル x=[x1 x2] に対し K(xi,xj)=(1 + xi

Txj)2
,とおく

このとき、次の式が成立する K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

= [1 xi1
2 √2 xi1xi2 xi2

2 √2xi1 √2xi2]T [1 xj1
2 √2 xj1xj2 xj2

2 √2xj1 √2xj2]

= φ(xi) Tφ(xj) ただし φ(x) = [1 x1
2 √2 x1x2 x2

2 √2x1 √2x2]

カーネル関数

 なぜカーネルを用いるか?
 分離可能でないものを分離可能にする.
 データをより適切な表現空間に写像する

 よく使われるカーネル

 線形

 多項式 K(x,z) = (1+xTz)d

 RBF Radial basis function
22

2
),(

jieK ji

xx
xx



RBFがカーネルであることを示すのは少し面倒である。

),(),(lim,, yxyxyx KKX n
n




f(x): X →R ⇒ f(x) f(y) はカーネル, カーネルの積はカーネル、

まとめ

 サポートベクターマシン (SVM) は
 サポートベクターに基づいて超平面を決める

 Support vector = 判定境界付近のクリティカルな点

 線形 SVM は線形分類器.
 カーネル: 高次元へ写像するが、その内積は低次元の
内積で簡単に計算できる

 リスクの上界 (リスク = テストデータでの期待誤り)
 （邪魔な属性が多いときの）分類器としてベスト?

 数1000も属性があるときは、安定的に強い

 ポピュラー: SVMlight がきっかけ?
 速くて無料 (研究目的には)
 他にもいくつか: TinySVM, libsvm, ….

参考
 A Tutorial on Support Vector Machines for Pattern Recognition

(1998) Christopher J. C. Burges
 S. T. Dumais, Using SVMs for text categorization, IEEE Intelligent

Systems, 13(4):21-23, Jul/Aug 1998
 S. T. Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive

learning algorithms and representations for text categorization.
Proceedings of CIKM ’98, pp. 148-155.

 A re-examination of text categorization methods (1999) Yiming Yang,
Xin Liu 22nd Annual International SIGIR

 Tong Zhang, Frank J. Oles: Text Categorization Based on Regularized
Linear Classification Methods. Information Retrieval 4(1): 5-31 (2001)

 Trevor Hastie, Robert Tibshirani and Jerome Friedman, "Elements of
Statistical Learning: Data Mining, Inference and Prediction" Springer-
Verlag, New York.

 ‘Classic’ Reuters data set: http://www.daviddlewis.com /resources
/testcollections/reuters21578/

 T. Joachims, Learning to Classify Text using Support Vector Machines.
Kluwer, 2002.

7

R における SVM
 svm を含むパッケージには e1071, kernlab, klaR, svmpath などが

ある。比較は、 http://www.jstatsoft.org/v15/i09/paper にあり。

 今回は、e1071 中の svm を用いてみる。

> library(e1071)
要求されたパッケージ class をロード中です
> setwd("D:/R/Sample")
> # banknote は前回のものを用いる
> banknote <- read.csv ("09banknote.csv", header=TRUE)
> head(banknote)
Length Left Right Bottom Top Diagonal Y

1 214.8 131.0 131.1 9.0 9.7 141.0 0
略

>
> # svm の最も簡単な使い方。"formula" で試そう
> # svm(banknote[,-length(banknote)], banknote[,length(banknote)]) でもよい
> #
> banknote.svm <- svm(Y ~ ., banknote)
>
> # confusion matrix: 見てびっくりしないで下さい。
> table(banknote$Y, predict(banknote.svm))

略

> # 何が起こったかというと:
> # 被説明変数 Y の値は、0と1が 09banknote.csv に書かれています。
> # svm はこれは数値だと思い、svm 回帰という、svm に基づく回帰方法を行ったのです。
> # そのため出力値が実数になっているのです。
> # もし、被説明変数の値が、factor として legitimate なら、svm は分類だと考えます。
> #
> # 分類をさせるには、出力値が範疇値であることを指示するか、結果を丸めればよい
> # 分類をさせるには、type='C' とすればよい（?svm でヘルプを見てください）
>
> # 回帰をして結果を丸めてみる。
> banknote.svm <- svm(Y ~ ., banknote)
> (cm <- table(banknote$Y, round(predict(banknote.svm))))

0 1
0 99 1
1 0 100

> (accuracy <- sum(diag(cm))/sum(cm))
[1] 0.995
>
> # 分類してみよう
> banknote.svm <- svm(Y ~ ., banknote, type='C')
> (cm <- table(banknote$Y, predict(banknote.svm)))

0 1
0 99 1
1 0 100

> (accuracy <- sum(diag(cm))/sum(cm))
[1] 0.995
>

> # 閑話休題
> # kernel の default値は 'radial' つまり、radial basis function
> # 線形カーネルを試してみよう
> #
> banknote.svm <- svm(Y ~ ., banknote, type='C', kernel='linear')
> (cm <- table(banknote$Y, predict(banknote.svm)))

0 1
0 99 1
1 0 100

> (accuracy <- sum(diag(cm))/sum(cm))
[1] 0.995
>
> # いずれにしても良すぎるね。
> # 過学習かもしれない。では、10-fold cross validation で調べてみよう
>
> library(bootstrap) # crossval を使用するために
>
> # 関数 crossval に必要な関数を定義する
> # なお、次では、svm に分類させている。
> theta.fit <- function (x,y) {
+ return(svm(x, y, type='C'))
+ }
> theta.predict <- function(fit, x) {predict(fit, x) }
>
> # では crossval を使ってみよう
> # こちらは "formula" を使わない仕様なので
> # 説明変数（ xy[,-length(xy)] ）と被説明変数（xy[,length(xy)]）を指定する
> xy <- banknote
> results <- crossval(xy[,-length(xy)], xy[,length(xy)], theta.fit,
+ theta.predict, ngroup=10)

>
> # confusion matrix と分類精度
> # svm には分類させたので
> (cm <- table(xy[,length(xy)], results$cv.fit))

1 2
0 98 2
1 1 99

> (accuracy10CV <- sum(diag(cm))/sum(cm))
[1] 0.985
> # 回帰をさせたいなら results$cv.fit を round(results$cv.fit) とすればよい
> #
> theta.fit <- function (x,y) {
+ return(svm(x, y))
+ }
> theta.predict <- function(fit, x) {predict(fit, x) }
> xy <- banknote
> results <- crossval(xy[,-length(xy)], xy[,length(xy)],
+ theta.fit, theta.predict, ngroup=10)
> (cm <- table(xy[,length(xy)], round(results$cv.fit)))

0 1
0 98 2
1 0 100

> (accuracy10CV <- sum(diag(cm))/sum(cm))
[1] 0.99
>

本日の課題

 iris データを SVM で分析（Speciesを予測
するように学習）してみよう

library(e1071)
iris を使えるようにする

data(iris)
属性名を調べる（ head(iris) でデータを見る方がよい）
names(iris)

第三回 レポート課題
 これまで（皆さんが）学習した機械学習手法のうち、naïve

Bayes, 決定木 と SVM（線形カーネルとRBFカーネル） と
を iris データと Wisconsin Breast Cancerデータに適用し、
その結果に基づき、手法の性質の違いを述べてください。
 Breast Cancer データの取扱い方法については、次のスライドに

記すことを参考にして下さい。

 なお、svm にも、解の複雑度を制御するパラメータがあります。
e1071のsvm では cost という引数です。default値は1です。今
回はdefault で結構です。RBFカーネルには、このsvmでは、
gammaがあります。defaultは1/ncol(x) で、BreastCancerのとき
は1/9になっています。その10倍と1/10倍を比較して下さい。

 締め切りは、1/13（火曜日） 23:59 とします。

 他の注意はこれまでと同じです。

10BreastCancer.csv

特に： 必ず、自分でやって下さい。

8

library(e1071)

Breast-cancer data
良性 ('benign') と悪性 ('malignant') を区別する。
パッケージ mlbench にあるデータ BreastCancer
nnet のプログラム例では、数値 0 と1 に直して回帰を行ったが、
本プログラム例では、もとのカテゴリデータのまま用いる。
#
setwd("D:/R/Sample")
bcdata <- read.csv('10BreastCancer.csv',header=TRUE)

属性名とデータの最初の部分を見ると、不要な（というよりあるべきでない）
属性が分る。勿論、慎重に考えるべきであるが
属性数、データ数もみてみよう

names(bcdata)
dim(bcdata)
head(bcdata)

測定値のない、すなわち、NA と書いてある行がある。
アルゴリズムによっては、単に無視したり、誤動作したりする。
削除しておくと便利である（安易な解決方法ではある）

bcdata <- na.omit(bcdata)
dim(bcdata)
ndata <- dim(bcdata)[1]

subset() 関数を用いて、不要な属性の削除ができる
Classは分離してみよう

bc <- subset(bcdata,select=c(-Id,-Class))
bcclass <- subset(bcdata,select=Class)

CV ではなく、学習データとテストデータを分けて実験してみよう
訓練データ（全データの部分集合）を作る

bctrain <- bc[1:400,]
bctrainclass <- bcclass[1:400,]

テストデータ（全データの部分集合）を作る

bctest <- bc[401:ndata,]
bctestclass <- bcclass[401:ndata,]

pred <- predict(model, bctest)
(cm <- table(bctestclass, pred))
(accuracy <- sum(diag(cm))/sum(cm))

テストデータを用いた予測は次のように行う

svm での学習には、この二
つのデータを用いて下さい。

iris のデータから各クラス４０個の学習データと
10個のテストデータは、例えば、次のようにして、
取り出すことができます
iristrain <- iris[c(1:40,51:90,101:140),]
iristest <- iris[c(41:50,91:100,141:150),]

