IR EERALIE
* 10. 9 R—kRYB—T

BIFMEETEH
BHAEA

i SVM DR

= SVM [&Vapnik OfEEHIFEZER/ M SEFENT= [3]
s SVM [£1992F M COLT THF 41 7= (Boser, Guyon and Vapnik)[1]
= SVM [FRECE R, FESHFRHOBEN B, o1

= SVMIF1.1% DT RRRY. ChlE. FAYIZE>Fz=a—F LRk

7—% (LeNet 4) LRILLB LN THST=.
« B%: [2]MSection 5.11. [3]ddiscussion

s SVM [EETIE A—RIVEDORKRLGHIERLGTEINTINS

w SED BRIV (BEH, kernel) DEKIELLDEH DD T TENDTE

[1] B.E. Boser et a/. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on
Computational Learning Theory 5 144-152, Pittsburgh, 1992.

[2] L. Bottou et a/. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82.

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2" edition, Springer, 1999.
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= WIETDHO I TR 0REEE
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» ETBD o IZRFET X, [E support vectors (SV) EFEIENRS
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OL(W,b,a) OL(W,b,a) OL(W,b,a)
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LB A, FE AL,

W= arx 0= a, 0=C-a,-v,

ChoEEMEICREE

L(w,b,a) :Za‘ —%;a,a,y,y,x, X,
f=fzL. &1,
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i B L RE
n COFIFIFERE L FERE D B R
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= A Tutorial on Support Vector Machines for Pattern Recognition
(1998) Christopher J. C. Burges

= S.T.Dumais, Usin% SVMs for text categorization, IEEE Intelligent
Systems, 13(4):21-23, Jul/Aug 1998

= S.T.Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive
learning algorithms and representations for text categorization.
Proceedings of CIKM 98, pp. 148-155.

= A re-examination of text categorization methods (1999) Yiming Yang,
Xin Liu 22nd Annual International SIGIR

= Tong Zhang, Frank J. Oles: Text Categorization Based on Regularized
Linear Classification Methods. Information Retrieval 4(1): 5-31 (2001)

= Trevor Hastie, Robert Tibshirani and Jerome Friedman, "Elements of
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= ‘Classic’ Reuters data set: http://www.daviddlewis.com /resources
Itestcollections/reuters21578/

= T.Joachims, Learning to Classify Text using Support Vector Machines.
Kluwer, 2002.




RIZEIFTS SVM

= svm &y —TIZiF e1071, kernlab, klaR, svmpath 72&E A
%, thEIE. http://www.jstatsoft.org/v15/i09/paper IZ&HY
= 5[EIE. 1071 D svm #AVTH5,

> Tlibrary(el071)
EXRShtzwr—2 class #0—FHTYT
> setwd("D:/R/Sample")
> # banknote [FHIENLOEALS
> banknote <- read.csv ("09banknote.csv", header=TRUE)
> head(banknote)
Length Left Right Bottom Top Diagonal Y
1 214.8 131.0 131.1 9.0 9.7 141.0 0
B

>
> # svm ORLEHEEFENS, "formula” THES

> # svm( banknote[,-length(banknote)], banknote[,length(banknote)] ) TH&kid
> #

> banknote.svm <- svm( Y ~ ., banknote )
>
> # confusion matrix: RTU2KYLABLTTEL,

> table( banknote$y, predict(banknote.svm) )
B

> # st ofaELSE:
> # WHAZH Y OfEIE, 0£14% 09banknote.csv ISBANTNET,
> # svm FTNIEHELZEBL. svm BIREVS, svm (SR I<ERAEETLDTY,
> # TOf: NEMNERBIHES>TNEDTY
> # &L, BAZHMDfEA. factor &LT Tlegitimate %5, svm [FDELEEZET,
> #
> # SEESHBITE HAHELSEHETHHLEETT 0. BREADNIELL
> # HEESEDITE, type="C' EFTIIEKL (?svm TALTER TS
>
> # ERELTRREAHTHS,
> banknote.svm <- svm( Y ~ ., banknote )
> ( cm <- table( banknote$y, round(predict(banknote.svm)) ) )
0 1

0 99 1

1 0 100
> ( accuracy <- sum(diag(cm))/sum(cm) )
[1]1 0.995
>
> # HELTHES
> banknote.svm <- svm( Y ~ ., banknote, type='C' )
> ( cm <- table( banknote$y, predict(banknote.svm) ) )

0 1

0 99 1

1 0 100
> ( accuracy <- sum(diag(cm))/sum(cm) )
[1] 0.995

>

> # BIEERRE
> # kernel 0 defaultfEl 'radial’ 2%Y.radial basis function
> # BRH—RLERLTHES
> #
> banknote.svm <- svm( Y ~ ., banknote, type='C', kernel='linear')
> ( cm <- table( banknote$y, predict(banknote.svm) ) )
0 1

0 99 1

1 0 100

( accuracy <- sum(diag(cm))/sum(cm) )

1] 0.995

# LWTHISLTERTEDR,

# BFEEMBLLIALL, TIE, 10-fold cross validation THNTHES
Tibrary(bootstrap) # crossval ZEAT5HHIC
# B% crossval [CRELEBEEETD

# BERTIE, svm IZHFSE TS,

theta.fit <- function (x,y) {

return( svm( x, y, type='C' ) )

theta.predict <- function( fit, x) {predict( fit, x) }

# TI& crossval #E>THES

ChalE "formula" EELGLMEBRLEDT

SIZEM( xy[,-Tength(xy)] ) EHRBER (xy [, Tength(xy) ) £#52T 2
Xy <- banknote

results <- crossval(xy[,-Tength(xy)], xy[,length(xy)], theta.fit,
theta.predict, ngroup=10)

+VVVVVVVH+VVVVVVVYVVAY
W 3 —

>
> # confusion matrix &HMEEREE
> # svm [CEHFESLLDT
> (cm <- table( xy[,length(xy)], results$cv.fit ))
12
098 2
1 199
> (accuracylOcv <- sum(diag(cm))/sum(cm))
[1]1 0.985

# ERESELVEDS results$cv.fit & round( results$cv.fit ) EFhiF&Ly
#

theta.fit <- function (x,y) {
return( svm( x, y ) )

theta.predict <- function( fit, x) {predict( fit, x ) }
Xy <- banknote

results <- crossval(xy[,-Tength(xy)], xy[,length(xy)],
theta.fit, theta.predict, ngroup=10)

(cm <- table( xy[,length(xy)], round( results$cv.fit ) ))

0 1
0 98 2
1 0 100
> (accuracylOcv <- sum(diag(em))/sum(cm))
[1] 0.99
>

= iris T—4A% SVM T4 #f (Species% ¥ I
FTHEIIZEE)LTHES

Tibrary(e1071)
#iris #EABL31ZT5

#

data(iris)

# BHAEHE~D( head(iris) TT—4ERDBAN KLY
names (iris)

10BreastCancer.csv|
|

b — ) =ma |
£ =[a LR—rRE Y,
= CRETESAN) FELBHEEFEDIS. faive
Bayes, REAR & SVM#RHH—RILERBFA—R)L) &
% iris T—4& Wisconsin Breast Cancer7—#4IZ& L.
ZORRIZEDE, FEROEEDENERAN TS,
= Breast Cancer T—42DEIRLVAEIZDONTIE. RORFAKIZ
BIEESFITLTTEL,
= BB svm IS BOERELEFIHT D/ 5A—0BYET .
e1071Msvm Tl& cost V5518 TT , defaultfEl$1TH . &
[Bl(Fdefault THEHETY . RBFA—FRILIZIE, SDsvmTIE.
gammani$H Y ET ., defaultix1/ncol(x) T. BreastCancer® L&
[£1/912>TWET , ZD10f5L1/105Z LB L TT S,

» HEOLIVIE, 1/13CKEER) 23:59 ELFET,
s HOFEIFINFETLERLTT , Hic: BT AFTOoTTEL.




Tlibrary(el071)

# Breast-cancer data # subset() BABZEAVT. FTELREDHIRATES
#  RiEt ("benign') LEME (‘malignant') #XAET5, # ClassEHBLTHES
# /%v/r—2 mlbench [28%%7—% BreastCancer
# nnet NT7OSSLBITIE. #iE 0 &1 ISELTEBET>FAN bc <- subset(bcdata,select=c(-Id,-Class))
# AITOTSLHITE. LEOATIIT—2OFEANS, bcclass <- subset(bcdata,select=Class)
#
setwd("D:/R/SampTle™) # CV TR BT —RETFAMNT —SES T TRRLTHES svm TOXFBFIZF. ZOZ
bcdata <- read.csv('10BreastCancer.csv',header=TRUE) # NET—2(&T—20OHBLEE)EED DOTF—HERAVTTFEL,
# BHEET—ADBRNOBRERDE FRE(EVIEYHHNETHLY) bctrain <- bc[1:400,]
# BIESDD. N, MEITEZZETHEA bctrainclass <- bcclass[1:400,]
# BHR. T ARLATHES

# TAMT—R(RT—SOHBREE) EFD
names (bcdata) F— e po——
dim(bcdata) betest <- bc[401:ndata,] A - et A
head(bcdata) bctestclass <- bcclass[401:ndata,] # MYMFoenTEET

iristrain <- iris[c(1:40,51:90,101:140),]

# AEEOLD. THDLNA EBVTHATHHD. iristest <- iris[c(41:50,91:100,141:150),]

# FILTYZXLIZESTIE, BISEELEY, BBELEYT 2.
# HIRLTHECEBFITHD (RPEMBRTETEHD) . .
TRAMT—2ERVEFRIFROELS124T5
bcdata <- na.omit(bcdata)
dim(bcdata) pred <- predict(model, bctest)

ndata <- dim(bcdata)[1] (cm <- table(bctestclass, pred ) )

(accuracy <- sum(diag(cm))/sum(cm))




