

Nearest Neighbour or Instance-based Learning

Akito Sakurai

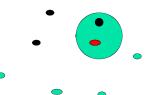
Instance-based Learning

- Concept
 - Remember all the training data <x_i,f(x_i)> (will not consider what and how to predict until we need to do so).
 - . If we asked, we will do the best at the time
- Technology belonging to this class
 - Nearest neighbor
 - k-Nearest neighbor
 - Locally weighted regression
 - Radial basis functions
- Called "Lazy" technique. What is "eager," then?

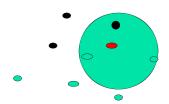
Nearest neighbor

- Basic Concept
 - For a query x_q , find out a nearest point x_n , and answer with a reply $f(x_q) \leftarrow f(x_n)$.
- k-Nearest neighbor
 - Find out (not one but) *k* nearest neighbors, and make a reply based on *majority* of their replies.
 - Average of *k* nearest neighbors is also used

1-Nearest Neighbor

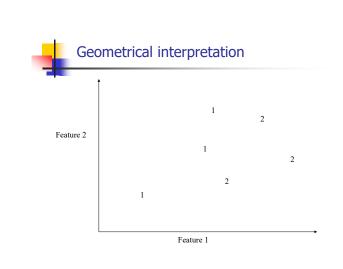


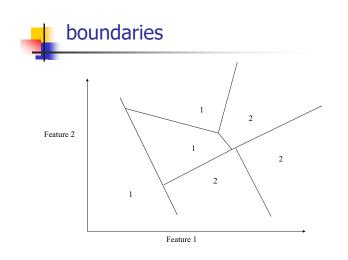
3-Nearest Neighbor

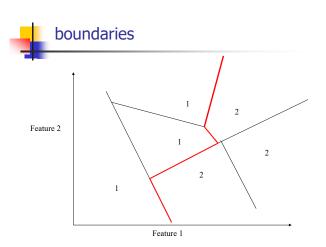


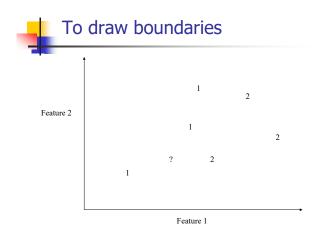
Features

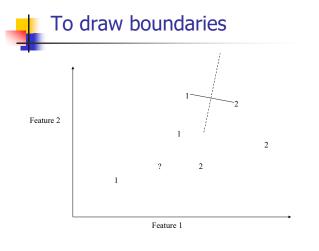
- k-NN is appropriate when
 - Feature vector could be seen as a point in \mathbb{R}^n
 - # of feature is not large (less than a few dozens)
 - You have a large amount of data
- K-NN is
 - Fast to learn
 - Could represent a complicated target function
 - Will not lose information contained in training data
- K-NN is
 - Slow to answer (predict)
 - Is easily fooled by irrelevant features

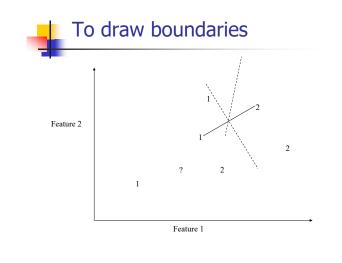


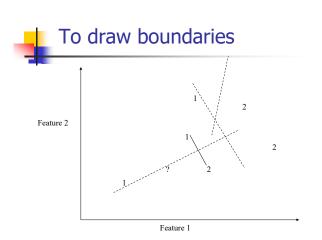


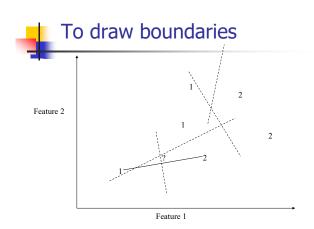


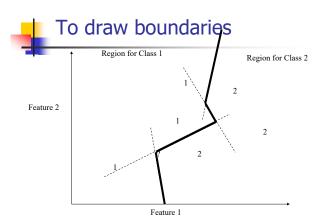


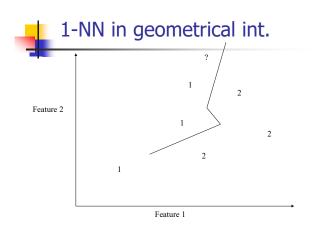


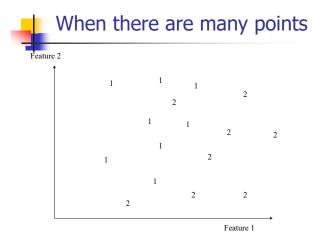


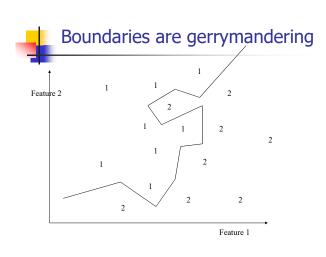


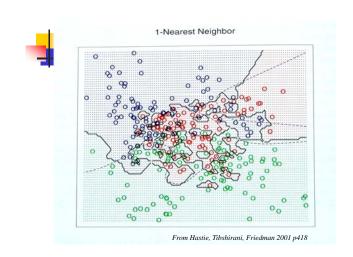


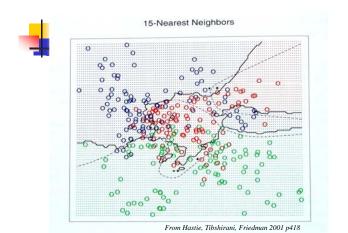












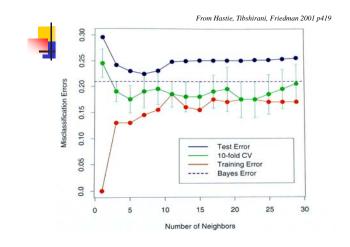


Table 6. Results summary of TC systems on Reuters versions 1-4.

System	Reuters version 1	Reuters version 2	Reuters version 3	Reuters version 4
WORD	_	.15 (Scut)	.31 (Pcut)	.29 (Pcut)
kNN	_	.69 (Scut)	.85 (Scut)	.82 (Scut)
LLSF	_	_	.85 (Scut)	.81 (Scut)
NNets.PARC (perceptron)	_	_	_	.82 (Pcut)
CLASSI (perceptron)	_	_	.80	_
RIPPER (DNF)	_	.72 (Scut)	.80 (Scut)	_
SWAP-1 (DNF)	_	_	.79	_
DTree IND	_	.67 (Pcut)	_	_
DTree C4.5	_	_	.79 (F ₁)	_
CHARADE (DNF)	_	_	.78	_
EXPERTS (n-gram)	_	.75 (Scut)	.76 (Scut)	_
Rocchio	_	.66 (Scut)	.75 (Scut)	_
NaiveBayes	_	.65 (Pcut)	.71	_
CONSTRUE (Exp. Sys.)	.90	_	_	_

Yiming Yang, An Evaluation of Statistical Approaches to Text Categorization, Information Retrieval, vol.1, 69-90 (1999)

			#1	#2	#3	#4	#5
	1	a of documents	21.450	14.347	13.272	12,602	12,600
		# of training documents	14.704	10.667	9.610	9.603	9.603
		# of test documents	6,746	3,680	3,662	3,299	3,299
		# of categories	135	93	92	90	10
System	Type	Results reported by					
Work	(non-learning)	[Valid 1999]	.150	.510	.290		
	probabilistic	[Dumais et al. 1998]				.752	.615
	probabilistic	[Joachims 1998]					.720
	probabilistic	[Lam et al. 1997]	.443 (MF ₁)				
ProfEssen	probabilissic	(Lewis 1992)	.650				
Bine	probabilissic	[Li and Yamanishi 1999]				.747	
	probabilistic	[Li and Yamanishi 1999]				.773	
Ne	probabilissic	(Yong and Liu 1999)				.795	
	decision trees	Dumais et al. 1998					.664
C4.5	decision trees	[Joachims 1998]					.794
bp	decision trees	[Lowis and Ringuette 1994]	-670				
Swar-1	decision rules	[Apté et al. 1994]	.010	.805			-
Barren	decision rules	Cohen and Singer 19991	-683	811		.820	
Scarpenc Expenses	decision rules	Cohen and Singer 1999	.753	759		.827	
Di-Esc	decision rules	Li and Yamanishi 1999	1700	1100		.820	
CHARACE	decision rules	Moulinier and Ganascia 1996		.738		.620	
CHARAGE	decision rules	[Moulinier et al. 1996]		.783 (F ₁)			
Lur	regression	[Yang 1999]		.565	-810	_	_
LANG		[Awed 1444]		.855	.610	.849	
BALANCER/WINNER	regression on-line linear	[Yang and Liu 1999] [Dagan et al. 1997]	.747	.633	_	1047	_
Warner-Hore	on-line linear	[Dagan et al. 1997] [Lam and Ho 1998]	-747	.633		.822	
			-660	748			_
Roccuso	batch linear	[Cohen and Singer 1999]	.660	.748		.776	
FreeStee	batch linear	[Dumais et al. 1998]				.617	.646
Воссию	batch linear	[Joachims 1998]					.799
Воссию	batch linear	[Lam and Ho 1998]				.781	
Roccino	batch linear	[Li and Yamanishi 1999]				.625	
CLANE	neural network	[Ng et al. 1997]		.802			
Nour	neural network	[Yang and Liu 1999]				.838	
	neural network	Wiener et al. 1995			.820		
Ga-W	example-based	[Lam and Ho 1998]				.860	
k-NN	example-based	[Joachims 1998]					.823
k-NN	example-based	[Lam and Ho 1998]				.820	
k-NN	example-based	[Yang 1999]	.690	.852	.820		
k-NN	example-based	[Yang and Liu 1999]				.856	
	SVM	Dumais et al. 1998				.870	.020
Syntager	SVM	[Joachims 1998]	1		1		.864
Syndatore	SVM	[Li and Yamanishi 1999]	1		1	.841	
Soutager	SVM	D'ang and Liu 1999			1	.859	
Analioost MH	committee	Schapire and Singer 2000!		.860			
	committee	(Weiss et al. 1999)	1		1	878	
	Bayesian net	Durali et al. 19987			_	800	.850
	Bayesian net	[Lam et al. 1997]	.542 (MF ₁)				

Table 6. Comparative results among different classifiers obtained on five different version of the Reuters collection. Unless otherwise noted, entries indicate the microaveraged breakeven point; within parentheses, \mathbf{M}^{n} indicates macroaveraging and \mathbf{F}_{1}^{n} indicates use of the F_{1} measure. Boldface indicates the best performer on the collection.

Fabrizio Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol.34, no.1, 1-47 (2002)

Table VI. Comparative Results Among Different Classifiers Obtained on Five Different Versions of Reuten (United Obtained India) and Comparative Compa

			31	#2	#3		85
		# of documents # of training documents # of test documents # of categories	21,450 14,704 6,746 135	14,347 10,667 3,680 93		9,603 1,299 90	9,660
System	Type	Results reported by	-				
With	thon-lost since	Tring 1960)	.150	200	250	-	_
PaceRores Rose No	probabilistic probabilistic probabilistic probabilistic probabilistic probabilistic	Durnati et al. 1998 Acachima 1998 Lora et al. 1997 Loval 1992a Li and Vernorrichi 1999 Li and Vernorrichi 1999 Yesty and Liu 1999	401-MF ₁			.752 .720 .747 .729 .795	.81
C4.5 Ino	doession trees decision trees docision trees	[Durmais et al. 1908] [Josephine 1998] [Lewis and Ringuistic 1994]	.670			.794	.88
SHANT REPERS SERVICES DUESC CRAMME CRAMME	decision rules decision rules decision rules decision rules decision rules decision rules	[Apto et al. 1994] [Cohen and Singer 1999] [Cohen and Singer 1999] [Li and Yamanishi 1999] [Modinier and Ganascia 1996] [Modinier et al. 1996]	.683 .753	300 811 750 738 781 (Fe		820 827 820	
Law	regression regression	[Yong 1999] [Yong and Liu 1999]		.854	.810	:849	
Winney-Hory	on-line linear on-line linear	Dagen et al. 1997 Lora and Ho 1998;	242 OIL	8331 M		822	
Francisa Baccano Baccano Baccano Baccano	totch incor totch incor totch incor totch incor totch incor	Cohen and Singer 1969 Dunois et al. 1998 Josephins 1998 Lon and Ho 1998 Li and Yanonisha 1999	A440	-748		.617 .799 .781 .625	60
Nser	neural network neural network neural network	(Ng et al. 1997) Yang and Liu 1999) (Wener et al. 1995)		.802	R20	.838	
E-NN R-NN R-NN R-NN	etample-based etample-based etample-based etample-based etample-based	[Luca and Ho 1998] [Josephine 1998] [Luca and Ho 1998] [Yong 1990] [Yong and Liu 1990]	.000	.852	.820	.860 .823 .820 .856	
SynLaurr SynLaurr SynLaurr	SVM SVM SVM	(Durante et al. 1998) (Josephina 1998) (Li Vernenichi 1999) (Yong and Liu 1999)		3/2/0		.870 .864 .841 .859	.929
AnaFocutMH	committee committee	Schapire and Singer 2000 Weiss et al. 1999		.860		.878	
	Reycolon act Reycolon act	(Durasis et al. 1998) (Lora et al. 1997)	542 (MF)			360	.65

Fabrizio Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys, vol.34, no.1, 1-47 (2002)

Behavior in infinity

- p(x): posterior prob. of x being 1 (positive)
- 1-Nearest neighbor:
 - when # of samples $\rightarrow \infty$, asymptotic to Gibbs
 - Gibbs predicts 1 with probability p(x)
- *k*-Nearest neighbor
 - # of smpls $\rightarrow \infty$ and k >> 1, asymptotic to Bayes opt.
 - Bayes opt. : Summing up all the votes, if p(x)>0.5 then 1 else 0.

Note: Expected error of Gibbs is at most twice of that of Bays optimal

Gibbs classifier

Given a new instance,

- Sample a hypothesis randomly according to P(h|D) over H
- 2. Classify the new instance by the hypothesis

When the expectation is taken over the prior distribution P(h) of target concepts,

 $E[error_{BayesOptimal}] \le E[error_{Gibbs}] \le 2E[error_{BayesOptimal}]$

(Haussler et al. 1994) or "Mitchell Machine Learning Chap. 6.8"

Useful when there exist many hypotheses and repetitive predictions

Bayes Optimal Classifier

$$\underset{c_{j} \in \{+,-\}}{\operatorname{arg\,max}} \sum_{h_{i} \in H} P(c_{j} \mid h_{i}) P(h_{i} \mid D)$$

Note: Bayes-optimal classifier need not to be in the hypothesis space H.

Note: Many papers/reviews claim that it works well. But in reality, it is often not the case. To clarify conditions when it does is an interesting research topic.

Note: Is it feasible? When feasible, it takes long time to calculate.

Bayes optimal vs. MAP

Suppose our hypothesis space H has three functions h1, h2 and h3

- $P(h1 \mid D) = 0.4$, $P(h2 \mid D) = 0.3$, $P(h3 \mid D) = 0.3$
- What is the MAP hypothesis?
- For a new instance \mathbf{x} , suppose $h1(\mathbf{x}) = +1$, $h2(\mathbf{x}) = -1$ and $h3(\mathbf{x}) = -1$
- What is the most probable classification of x? -1!

$$P(+1 \mid x) = 0.4$$
 $P(-1 \mid x) = 0.3 + 0.3$

 The most probable classification is not the same as the prediction of the MAP hypothesis

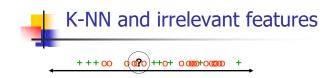
Distance-weighted k-NN

The closer, the heavier

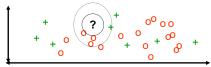
$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}, \quad w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

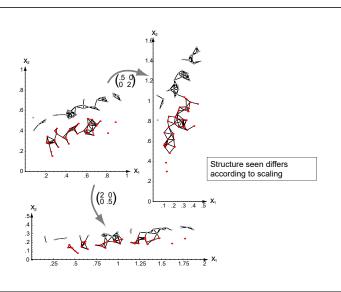
where $d(x_a, x_i)$ is the distance between x_a and x_i

 Using this, not only the "k samples" but also all the samples could be used ⇒Shepard's method (1968)

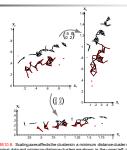


K-NN and irrelevant features





Problems with distance



Curse of dimensionality

- Suppose that we have 20 features but only tow of them are meaningful.
- Curse of dimensionality:
 - *k*-NN gives us any conclusion by the 18 features
- A solution:
 - Give weight z_i to the *j*-th feature, where z_i is chosen so that the prediction error is minimal
 - cross-validation would determine z_i .

Locally weighted regression

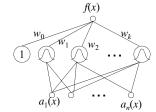
- k-NN is understood to locally approximate f around a query x_q .
- How about explicitly constructing an approximation of f(x) around x_a ?
 - Linear regression to *k*-NN ?
 - Second order regression ?
 - Spline?
- There are candidates of errors to be minimized

$$E_1(x_q) = \frac{1}{2} \sum_{x \in x_q} (f(x) - \hat{f}(x_q))^2$$

$$E_2(x_q) = \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x_q))^2 K(d(x_q, x))$$

Radial Basis Function Network

- Linear combination of local approximators
- A kind of neural networks
- Similar to distance-weighted regression
 - Not lazy but eager



$$f(x) = w_0 + \sum_{u=1}^k w_u K_u \Big(d(x_u, x) \Big)$$
An example of $K_u \Big(d(x_u, x) \Big)$

$$K_u \Big(d(x_u, x) \Big) = e^{-\frac{1}{2\sigma^2} d(x_u, x)^2}$$

Learning of RBF

- To Determine x_u of $K_u(d(x_u,x))$
 - Scatter them uniformly in the sample space
 - From training samples
- To Learn weights (supposing K_u is Gaussian)
 - Determine sd and mean of K_u .
 - E.g. EM
 - Fixing K_u , determine linear part
 - Linear regression is fast

Lazy vs. eager

- Lazy: does not generalize examples but think it over when queried.
 - k-Nearest Neighbor
- Eager: does generalize examples before queries
 - Learning-type algorithm, ID3, regression, RBF, etc.
- Any difference?
 - Eager: in many cases, creates a global approximation
 - Lazy: creates a local approximation when needed
 - For the same hypothesis space, lazy would create more complex hypothesis globally
 - Possible over-fitting
 - Flexible to combine complex regions and simple regions.

Summary

- Instance-base approach
 - Does not assume a global structure
 - Admits any structure
 - Susceptible to noise (could not utilize global information to smooth it locally)
 - Curse of dimensionality