
Decision Tree

Akito Sakurai

1

Decision tree

 Structure and construction

 Through the decision tree, the followings will
be explained:
 Over-training/learning
 Bias vs. variance
 Occam’s razor etc.

2

Materials for decision tree

 Training samples/data
 Instance or sample
 supposed to be sampled from a population according

to its (unknown) probability distribution
 a set of independently sampled samples

 Hypothesis space (set)

 Measure between desired output and prediction
 Error, error rate, cost, etc.

 New (unseen) samples/data
 Used for evaluation of learned models.
 Different but sampled likewise

3

Methods to learn

 Hypothesis set
 A set of candidate answers (=hypothesis) of ML

 E.g., a decision tree ＝ a hypothesis
 All possible decision trees ＝ a hypothesis set

 Learning process
 Pick up a hypothesis,
 Check if it explains training data well,
 Hand it as an answer if it is satisfactory, and
 Repeat the process if it is not.

4

Decision Trees
 It is a classifier

 sample: a vector of attribute (or feature) values + label
 Internal Nodes: a test of attribute values

 typical: if an attribute has a certain value or not (e.g., “Wind = ?”)
 others: inequality

 Branches: True/False, values, value range, etc.
 e.g., “Wind = Strong”, “Wind = Light”)

 Leaves: class labels, i.e. classification result

Outlook?

Humidity? Wind?Maybe

Sunny Overcast Rain

YesNo

High Normal

MaybeNo

Strong Light

PlayTennis
(decision tree

corresponding to the
above table)

Note: comprehensibility

Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Cloudy Hot High Weak Yes
D4 Rainy Mild High Weak Yes
D5 Rainy Cool Normal Weak Yes
D6 Rainy Cool Normal Strong No
D7 Cloudy Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rainy Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Cloudy Mild High Strong Yes
D13 Cloudy Hot Normal Weak Yes
D14 Rainy Mild High Strong No

T.Mitchell, 1997

5

Decision tree is a Boolean function
 Decision tree is a Boolean function

 expressiveness: Any Boolean function (literal is a test on an attribute) can be expressed
 Why?

• Decision tree is directly interpreted as a Disjunctive Normal Form (DNF)
• The following one: (Sunny  Normal-Humidity)  Overcast  (Rain  Light-Wind)

Outlook?

Humidity? Wind?Yes

Sunny Overcast Rain

YesNo

High Normal

YesNo

Strong Light

6

Decision boundary １

 Instances are in general expressed with discrete features.
 Continuous values features are treated as range

 Typical value types
• nominal ({red, yellow, green})
• quantized ({low, medium, high})

 Continuous values
• Discretization and/or vector quantization: divide by thresholds

ex. U. M. Fayyad and K. B. Irani, Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning, Proc. 13th IJCAI (1993).

7

Decision boundaries ２

 Continuous values can be used directly
• In the case, a branch designates a value range.

• At each node, the samples are tested with an attribute against a
threshold.

• The thresholds are determined in learning phase.

• Decision boundaries are, therefore, piecewise linear (hyper plane)
 Sample space is divided by hyperplanes perpendicular to axes.

+

+-

-

-

y > 7?

No Yes

+

+

+

+

+

x < 3?

No Yes

y < 5?

No Yes

x < 1?

No Yes
+

+

-

-

y

x1 3

5

7

8

Learning process is hypothesis
output process

 In general, learning process is a process to output hypotheses. They
may be output
 Just once,
 Predefined times, or
 Infinitely many times.

 When hypothesis space is finite (# of hypotheses in the space is finite)
 Try out all the hypotheses, and output the best one, or
 Try out a part of it, and output the best one.

 In general, although finite, exhaustive search is impossible

 When the hypothesis space is infinite
 Try just a part of it, and
 Continously output tried hypothesis with the evaluation result infinitely

 In either case, the order of search is critically important
9

Selection order of hypothesis

 Output infinitely many times
 Seemingly, only one hypothesis is output, because

 When a terminal condition is satisfied, halts and outputs
 Why infinitely many times?

 The optimum is a limit of infinite repetitions.
 Search order is critical

 The later the better is what we require
 If so, we can stop the sequence at any time

 In reality, we cannot do it
 Bias

 Any order we take, our best hypothesis has
certain bias, which is called, training/learning bias

10

For decision trees

 Hypothesis space is finite
 Discrete attributes only: one attribute could

appear only once on a path from root to a leaf.
 When continuous attributes exist: if we count

trees once which give the same prediction to the
same sample, the trees are finite.

 But exhaustive check is infeasible
 Too many

 How to treat?

11

DT-learning: top-down induction (ID3)

 Algorithm Build-DT (Examples, Attributes)
 Recursively applied to partial trees

 Examples: a subset of training set, Attributes: a subset of all the attributes
IF the labels of Examples are the same, THEN RETURN (the leaf with the label)
ELSE

IF Attributes is empty THEN RETURN (the leaf with the majority label)
ELSE

select a best attribute A as a root. Build trees as follows and connect them.
FOR each value v of A

Build branches corresponding to conditions A = v
IF {x  Examples | x.A = v } = Ø

THEN build a leaf with majority label
ELSE Build-DT ({x  Examples | x.A = v }, Attributes – {A})

12

Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Cloudy Hot High Weak Yes
D4 Rainy Mild High Weak Yes
D5 Rainy Cool Normal Weak Yes
D6 Rainy Cool Normal Strong No
D7 Cloudy Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rainy Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Cloudy Mild High Strong Yes
D13 Cloudy Hot Normal Weak Yes
D14 Rainy Mild High Strong No

DT-learning: recursion

D13

D12 D11

D10
D9

D4

D7

D5

D3D14

D8

D6
D2

D1

D13

D12
D11

D10

D9
D4D7

D5

D3

D14

D8 D6

D2

D1

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

13

[21+, 5-] [8+, 30-]

DT-learning: best attributes? (ID3)

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

 Which attribute is best?
 For example, which one is better?

14

What is the best attribute?

 As a result of selecting the attribute, the smaller the
built tree is, the better
 A smaller tree is better. Why?

 A detailed explanation will be given later. Here, a tree is smaller →	
paths to leaves are shorter → a fewer attributes are used for
decision → closer to reality

 In case of binary classification
 Comparing [10+,10] to [0+,20],

which will result in smaller tree?

0.0
0.5 1.0

Si
ze

 o
f a

 tr
ee

Ratio of ＋

15

Best attribute?

 Various functions
 Suppose the x-axis represents ratio

of "+" class. The peak should come
at 0.5. Axial symmetric with 0.5.

 Entropy (average information
content) function is the typical one
H(D)  -p+ logb (p+) - p logb (p)

0.0
0.5 1.0

木
の
大
き
さ

＋の割合

16

[21+, 5-] [8+, 30-]

Best attribute: calculation

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

Entropy before the selection െଶଽ଺ସ log ଶଽ଺ସ െ ଷହ଺ସ log ଷହ଺ସ ൎ 0.9936507

0.7062741 0.7424876 0.9366674 0.6193822
26/64 38/64 51/64 13/64

0.7277758 0.8722188

Entropy after the selection of attribute

17

Entropy: information theoretic def.

 Elements considered
 D: a set of samples {<x1, c(x1)>, <x2, c(x2)>, …, <xm, c(xm)>}
 p+ = Pr(c(x) = +), p = Pr(c(x) = )

 Definition
 H is defined on a probability distribution p
 For samples in D , frequency of labels + and – be expressed by p+ and p respectively
 The entropy of D is:

H(D)  -p+ logb (p+) - p logb (p)

 Unit?
 Depends on the basis of log (bits for b = 2, nats for b = e.)
 1 bit is necessary to encode a sample in its worst case (p+ = 0.5)
 If uncertainty is small (e.g., p+ = 0.8), less than 1 bit is necessary

18

 A measure for uncertainty/ambiguity; higher for higher uncertainty
 Target of measure

• purity: how the sample set is close to status being of just one label
• impurity (disorder): how the set is close to status where the labels are not predictable

 measure: entropy
• Positively correlate with: impurity, uncertainty, irregularity, unpredictability
• Negatively correlate with: purity, certainty, regularity, predactibility

 Example
 For simplicity, suppose that H = {0, 1}, and distributed according to a distribution Pr(y)

• Same as the case with (more than two) discrete labels
• Even continuous probability distribution: differential entropy (integration for sum)

 The most pure cases about y are one of the two:
• Pr(y = 0) = 1, Pr(y = 1) = 0
• Pr(y = 1) = 1, Pr(y = 0) = 0

 The distribution with the least purity
• Pr(y = 0) = 0.5, Pr(y = 1) = 0.5
• The most: inpurity/uncertainty/irregularity/unpredictability
• Entropy function: concave (“upward convex”)

Entropy: intuitive explanations

0.5 1.0
p+ = Pr(y = +)

1.0

H
(p

) =
 E

nt
ro

py
(p

)

19

Information gain: definition

 Partition according to attribute values
 remember: partition of D is, a set of mutually exclusive subsets whose union is D
 target: reduction of uncertainty/impurity by partition with values of attribute A

 Definition
 Information gain by attribute A is expected reduction of entropy by partition based on A

where Dv is {x  D | x.A = v }, i.e., a set of samples in D whose value for attribute A is v
 Note: entropy values are adjusted according to the size of subset Dv of A

 Because entropy value is a value per one element of the set.

 Which attribute is better?

         




















 

 values(A)v
vv

values(A)v
v

v DHDDHD
D

DH
D
D

DH AD,Gain 1

[21+, 5-] [8+, 30-]

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

20

Example
 Training sample set for a concept PlayTennis

 ID3  Build-DT where information gain function Gain(•) is used
 Let us see how ID3 works

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

21

Building decision tree for PlayTennis
by using ID3 (1)

 Select an attribute for the root node

 Prior (unconditioned) distribution: 9+, 5-
 H(D) = -(9/14) log (9/14) - (5/14) log (5/14) bits = 0.94 bits
 H(D, Humidity = High) = -(3/7) log (3/7) - (4/7) log (4/7) = 0.985 bits
 H(D, Humidity = Normal) = -(6/7) log (6/7) - (1/7) log (1/7) = 0.592 bits
 Gain(D, Humidity) = 0.94 – ((7/14) * 0.985 + (7/14) * 0.592) = 0.151 bits
 similarly, Gain (D, Wind) = 0.94 – ((8/14) * 0.811 + (6/14) * 1.0) = 0.048 bits

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

     
 













values(A)v
v

v DH
D
D

DH AD,Gain

[6+, 1-][3+, 4-]

Humidity

High Normal

[9+, 5-]

[3+, 3-][6+, 2-]

Wind

Light Strong

[9+, 5-]

22

Building decision tree for PlayTennis
by using ID3 (2)

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

 Select an attribute for the root node

 Gain(D, Humidity) = 0.151 bits
 Gain(D, Wind) = 0.048 bits
 Gain(D, Temperature) = 0.029 bits
 Gain(D, Outlook) = 0.246 bits

 Select the next attribute (root of subtree (child tree))
 Continue until all the attributes are used （on a path to the leaf）or purity=100%
 purity = 100% means just one label for the training samples for the leaf
 By the way, could Gain(D, A) < 0 happen?

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

23

DT-learning: recursive application

D13

D12 D11

D10
D9

D4

D7

D5

D3D14

D8

D6
D2

D1

D13

D12
D11

D10

D9
D4D7

D5

D3

D14

D8 D6

D2

D1

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

24

Building decision tree for PlayTennis
by using ID3 (3)

 Select an attribute for the root node (for subtree)

 convention: 0 log (0/a) = 0
 Gain(DSunny, Humidity) = 0.97 - (3/5) * 0 - (2/5) * 0 = 0.97 bits
 Gain(DSunny, Wind) = 0.97 - (2/5) * 1 - (3/5) * 0.92 = 0.02 bits
 Gain(DSunny, Temperature) = 0.57 bits

 Top-down and recursive application
 If there are n discrete attributes only, (n) partitions are enough for a path.
 At each level of a tree, there exits at most one scan through a whole data

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

25

Building decision tree for PlayTennis
by using ID3 (4)

Humidity? Wind?Yes

YesNo YesNo

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

Outlook?
1,2,3,4,5,6,7,8,9,10,11,12,13,14

[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-] 26

For broader fields

 Assumptions in the algorithm ID3 and its avoidance.
 Discrete output →	continuous output

• Continuous values can be output
• E.g. Regression trees [Breiman et al, 1984]

 Discrete input→	continuous input
 Quantization methods
 Inequality instead of equality

 Scale-up
 Knowledge discovery and/or data mining in very large DB (VLDB)
 Positive: there are good algorithm to process many samples
 Negative: too many attributes is a headaches

 Desired tolerance
 Tolerance to noisy data (classification noise  incorrect labels; attribute noise 

inaccurate/low frequent data).
 Tolerance to missing data

27

Decision tree in R

 As R language packages, we have tree, rpart,
and mvpart which is an extension of rpart to
multivariate regression trees

29

Examples: tree
data(iris)
(iris.tr<-tree(Species~.,data=iris))
plot(iris.tr,type="u"); text(iris.tr)

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor

virginica virginica virginica

(iris.tr1<-snip.tree(iris.tr,nodes=c(12,7)))
plot(iris.tr1,type="u");text(iris.tr1)

1) root 150 329.600 setosa (0.33333 0.33333 0.33333)
2) Petal.Length < 2.45 50 0.000 setosa (1.00000 0.00000 0.00000) *
3) Petal.Length > 2.45 100 138.600 versicolor (0.00000 0.50000 0.50000)

6) Petal.Width < 1.75 54 33.320 versicolor (0.00000 0.90741 0.09259)
12) Petal.Length < 4.95 48 9.721 versicolor (0.00000 0.97917 0.02083)
24) Sepal.Length < 5.15 5 5.004 versicolor (0.00000 0.80000 0.20000) *
25) Sepal.Length > 5.15 43 0.000 versicolor (0.00000 1.00000 0.00000) *

13) Petal.Length > 4.95 6 7.638 virginica (0.00000 0.33333 0.66667) *
7) Petal.Width > 1.75 46 9.635 virginica (0.00000 0.02174 0.97826)
14) Petal.Length < 4.95 6 5.407 virginica (0.00000 0.16667 0.83333) *
15) Petal.Length > 4.95 40 0.000 virginica (0.00000 0.00000 1.00000) *

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

setosa

versicolor virginica

virginica

library(tree)

deviance=  ii pn log2

30

Examples: tree

iris.label<-c("S", "C", "V")[iris[, 5]]
plot(iris[,3],iris[,4],type="n")
text(iris[,3],iris[,4],labels=iris.label)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

iris[, 3]

iri
s[

, 4
]

SSS SS

S
S
SS
S
SS

SS
S

SS
S SS

S

S

S

S

SS

S

SS SS

S

S
SSSS
S

S S
SS
S

S

S
S

SSSS

C
C C

C

C

C

C

C

C
C

C

C

C

C
C

C
C

C

C

C

C

C

C

C
C
C C

C

C

C
C

C

C

C
C
C

C

CCC
C

C

C

C

C
C
CC

C

C

V

V

V

V

V
V

V
VV

V

V
V

V
V

V
V

V

V
V

V

V

V V

V

V

VVV

V

V

V
V

V

V
V

V
V

VV

V

V
V

V

V

V

V

V
V

V

V

setosa

versicolor virginica

virginica

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

iris[, 3]

iri
s[

, 4
]

setosa

versicolor virginica

virginica

iris.color<-c("red","blue","green")[iris[,5]]
plot(iris[,3],iris[,4],col=iris.color)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)

31

Examples: tree

> library(tree)
> data(cars)
> cars.tr<-tree(dist~speed,data=cars)
> print(cars.tr)
node), split, n, deviance, yval

* denotes terminal node

1) root 50 32540.0 42.98
2) speed < 17.5 31 8307.0 29.32
4) speed < 12.5 15 1176.0 18.20
8) speed < 9.5 6 277.3 10.67 *
9) speed > 9.5 9 331.6 23.22 *

5) speed > 12.5 16 3535.0 39.75 *
3) speed > 17.5 19 9016.0 65.26
6) speed < 23.5 14 2847.0 55.71 *
7) speed > 23.5 5 1318.0 92.00 *

> plot(cars.tr,type="u")
> text(cars.tr)
> plot(cars.tr,type="u")
> text(cars.tr)
>

library(tree)
data(cars)
cars.tr<-tree(dist~speed,data=cars)
print(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)

|speed < 17.5

speed < 12.5

speed < 9.5

speed < 23.5

10.67 23.22

39.75 55.71 92.00

32

Examples: tree

plot(cars$speed,cars$dist)
partition.tree(cars.tr,add=T,col=2)

5 10 15 20 25

0
20

40
60

80
10

0
12

0

cars$speed

ca
rs

$d
is

t

33

Examples: tree

(cars.tr1<-prune.tree(cars.tr,best=4))
plot(cars.tr1); text(cars.tr1,all=T)

plot(cars$speed,cars$dist)
partition.tree(cars.tr1,add=T,col=2)

|speed < 17.5

speed < 12.5 speed < 23.5

42.98

29.32

18.20 39.75

65.26

55.71 92.00
5 10 15 20 25

0
20

40
60

80
10

0
12

0

cars$speed

ca
rs

$d
is

t

34

Evaluation of hyotheses

 We need to evaluate hypotheses/models
 Hypotheses/models are something we are going

to use
 We want to use, in some reasonable sense, good,

hypothesis/model with high accuracy/credibility
 What evaluation method do we have?

35

Basic concepts
before Precision/Recall

circle Other than circle

true:

Prediction
by a model:

circle
others

36

TP, TN, FP, FN

circle Other than circles

true:

circle
others

TP TNFP

FNPrediction
by a model:

TP: True Positive
TN: True Negative
FP: False Positive
FN: False Negative

predictionevaluation

37

Confusion matrix

True value

P N

Prediction
by a model

P
TP

(True
Positive)

FP
(False

Positive)

N
FN

(False
Negative)

TN
(True

Negative)

FPTP
TP


Precision

FNTP
TP


Recall FNTNFPTP
TNTP




Accuracy

38

Precision/Recall Tradeoff and
F-measure

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precision

R
ec

al
l 












recallprecision

F
11

2
1

1

39

Confusion matrix

True value

P N

Prediction

P
TP

(True
Positive)

FP
(False

Positive)

N
FN

(False
Negative)

TN
(True

Negative)

FPTP
TP


Precision

FNTP
TP


Recall FNTNFPTP
TNTP




Accuracy

帰無仮説は、「陽性でない」
（陽性であることを示したいから）

第一種の過誤=棄却した(陽性だと言った)が、それは誤り
第二種の過誤=受理した(陰性だと言った)が、それは誤り

positiveと判定

Type 1 error

Type 2 error

TNFP
FP


 FPR

TPFN
FN


 FNR

1-=specificity
=TNR=

1-=sensitivity
=TPR= TPFN

TP


TNFP
TN


40

ROC curve

 Receiver operating characteristics
 The ROC curve was first developed by electrical

engineers and radar engineers during World War II for
detecting enemy objects in battlefields and was soon
introduced to psychology to account for perceptual
detection of stimuli.
 https://en.wikipedia.org/wiki/Receiver_operating_characteristic

41

Radar ROC

42

https://www.youtube.com/watch?v=BKFHZJPKioQ

https://slideplayer.com/slide/9562694/

0.7

ROC curve

0 1

1

False Positive rate

True
Positive

rate

true positives
true positives + # false negatives

0.1
false positives

false positives + # true negatives

ROC curve (“Receiver Operating Characteristics”)

ROC Curves
• Changing the threshold, count the samples
• The larger the area under the curve (AUC), the better
• Suited for comparison of different learning methods

TPFN
FN


 FNR

1-=sensitivity

TNFP
FP


 FPR

1-=specificity

FNTP
TP


Recall

TP

FN

FP

TN

43

Training vs. generalization error

 Training error: The training error is the mean
of errors over the training sample ଵ ଵ ௡ ௡
 E.g., ݁ݎݎ஽ ݄ ൌ ሺ1 ݊⁄ ሻ∑ ሺ݄ ௜ݔ െ ݂ሺݔ௜ሻሻଶ௡௜ୀଵ
 Easy to calculate

 Generalization error: Expected prediction
error over an independent test sample :
 E.g., ݎݎܧ஽ ݄ ൌ ஽ሾሺ݄ܧ ݔ െ ݂ሺݔሻሻଶሿ

44 Elements of Statistical Learning 45

Over-learning/training/fitting

 To learn what should not be learnt
 What should not be learnt

 Bias existing in the training data
 Because training data is a finite subset of infinite set

(population), the training data has certain bias which is not in
the population.

 Error existing in training data
 In reality, any training set contains errors in labels

 ML tends to learn as much as it can
 Because it has very high learning capability

 E.g., it has a large number of adjustable parameters

46

bias

noise

47

Illustrative example

Piecewise
linear

4-th order
polynomial

2nd order
polynomial

データ

parameters 24+3=11 5 3+degree

多分過学習多分過学習？

48

 Example: induced tree

 Suppose that a noisy example exists in the training set
 sample 15: <Sunny, Hot, Normal, Strong, ->

• This is noisy . The correct label is +.
• The tree built without it misclassifies this “new” and “noisy” sample.

 How should the tree be updated (how should incremental learning be implemented)?
 A new hypothesis h’ = T’ may deteriorate the performance than h = T ?

Overtraining in DT: an example

Temp?

Hot CoolMild
9,11,15
[2+,1-]

15
[0+,1-]

No Yes
11

[1+,0-]

9
[1+,0-]

Yes
It may fit to noise or
accidental regularity

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

Decision tree for
PlayTennis

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]

Yes
9,11

[2+,0-]

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]

50

Overlearning in induction

 Definition
 A hypothsis h over-learns a training set D (overfits to D) iff there exists another hypothesis h’

such that errorD(h) < errorD(h’) and errortest(h) > errortest(h’) hold.
 Possible cause: the training set is too small (decision relying on too scarce information); noisy

data; simply accidental
 How to avoid?

 prevention
• Avoid overlearning before it occurs
• Select only important and/or relevant attributes (i.e., useful for a model)

• Caution: a chicken-and-egg problem; need a measure to predict relevance

 circumvention
• When it seems to happen, just go around it
• Prepare a test set, when a new h behaves worse, stop to learn

 recovery
• Wait until it happens, detect it, and recover from it
• Build a model, and discover and delete elements that cause over-learning (prune)

51

 How to avoid?
 prevention

• Select just relevant attributes (i.e., relevant to the decision tree)
• Prediction of relevance: try and error, add and delete

 avoidance
• Prepare validation set, and if prediction accuracy of h decreases, stop learning

 How to select “best” model (decision tree)
 Method described above: validation set is mutually exclusive to the learning set
 Another method: Minimum Description Length (MDL):

minimize: size(h  T) + size (misclassifications (h  T))

DT learning: avoiding over-learning

Size of tree (number of nodes)
0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

On training data

On test data

52

DT learning: avoiding over-learning

 Two basic approaches
 Pre-pruning (avoidance): Stop growing the tree in the middle, i.e., when there is not enough

data to select reliably the next attribute.
 Post-pruning (recovery): Prune an over-grown tree, i.e., cut down branches whose evidence

to exist is not enough

 Evaluation of subtrees to be pruned
 Cross-validation: divide data exclusively into training and validation dataset, and repeat
 Statistical test: test if the observed regularity is accidental or not
 Minimum Description Length (MDL)

• Increase of the complexity of a hypothesis T is larger/smaller than the complexity to describe
exceptions of the data to be explained?

• Tradeoff: increase of the description of the larger model versus that of increased residuals

53

Reduced-Error Pruning

 Post-Pruning, Cross-Validation Approach
 Divide the data given into training set and validation set
 Function Prune(T, node)

 Subtree rooted with node is pruned
 Build a leaf with node . (its label is the majority label)

 Algorithm Reduced-Error-Pruning (D)
 Diveide D into Dtrain (training / “growing”), Dvalidation (validation / “pruning”)
 Apply ID3 to Dtrain to build a complete tree T
 UNTIL accuracy measured with Dvalidation decreases DO

FOR an internal node candidate inT
Temp[candidate]  Prune (T, candidate)
Accuracy[candidate]  Test (Temp[candidate], Dvalidation)

T  T’  Temp 中で Accuracy が最良のもの

 RETURN (pruned) T

54

Effects of Reduced-Error Pruning

 Decrease of test errors by Reduced-Error Pruning

 Pruning of nodes decrease the test error
 Note: Dvalidation is different from Dtrain and Dtest

 Pros and cons
 Pros: The smallest among the most accurate T’ (a subtree of T) is obtainable
 Cons: smaller dataset is used to build T , in case the data is scarce.

• Could we afford Dvalidation ?
• If allowable data is not enough (Dtrain is not large enough), the pruning make error larger

Size of tree (number of nodes)
0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

On training data

On test data

Post-pruned tree
on test data

55

Rule Post-Pruning

 Often used
 Well-known countermeasure for overfitting
 C4.5 uses a derived version. C4.5 is a successor of ID3.

 Algorithm Rule-Post-Pruning (D)
 Build T from D (by ID3) – to adapt to D as close as possible (over-learning is allowed)
 Convert T to an equivalent rule set (a rule is for a path from the root to a leaf)
 Delete, independently, tests (conditions) as many as possible while estimated accuracy

increases
 Sort the pruned rules

• Sort them according to estimated accuracy
• In rows, apply them to Dtest

56

Convert a tree to a rule set

 Syntax of the rule set
 Left-hand side: conditions (equality tests on attributes form conjunctive formula)
 Right-hand side: class labels

 Example
 IF (Outlook = Sunny)  (Humidity = High) THEN PlayTennis = No
 IF (Outlook = Sunny)  (Humidity = Normal) THEN PlayTennis = Yes
 …

Yes

Overcast

Outlook?

Humidity?

Sunny

No

High

Yes

Normal

Wind?

Rain

No

Strong

Yes

Light

Decision tree for
PlayTennis

57

Replications in decision tree

 In decision tree: a shortcoming in representation
 Decision tree is not the simplest representation method
 point: replication of attributes is necessary

 Example of attribute replication
 e.g., Disjunctive Normal Form (DNF): (a  b)  (c  d  e)
 (one of) conjunctions should be replicated as subtrees

 Partial solutions
 Form a a new attribute
 Alias: constructive induction (CI)
 Ref. Chap. 10, T. Mitchell

a?

b?c?

c?

d?

e?

d?

e?

+-

+

+

-

-

-

-

-

0 1

0 1

0 1

0 1 0 1

0 1

0

0 1

58

A bit of constructive induction
 Synthesize a new attribute

 Synthesize a new attribute from the conjunction of the two attributes just before a “+ leaf”
 Also called feature construction

 Example
 (a  b)  (c  d  e)
 A = d  e
 B = a  b

 When repeated
 C = A  c
 Correctness?
 Time complexity?

a?

b?c?

c?

d?

e?

d?

e?

+-

+

+

-

-

-

-

-

0 1

0 1

0 1

0 1 0 1

0 1

0

0 1

B?

c?

A?-

+

0 1

0 1

0 1
-

+

B?

C?

- +

0 1

0 1
+

59

Decision tree: other topics

 Topics which common to other machine
leaning methods

60

Continuous attributes

 Two methods to deal with continuous attributes
 Discretization

• Divide attribute values into ranges
• e.g., {high  Temp > 35º C, med  10º C < Temp  35º C, low  Temp  10º C}

 On internal nodes, the thresholds are used for attribute tests
• e.g., A  a makes two subsets A  a and A > a
• Information gain is calculated, too.

 How to find the partition that maximizes information gain
 FOR each continuous attribute A

Split samples {x  D} according to values x.A
FOR each ordered pair (l, u) of values of A, which has different labels

evaluate information gain of partition by mid-point, i.e., DA  (l+u)/2, DA > (l+u)/2

 Example
• A  Length: 10 15 21 28 32 40 50
• Class: - + + - + + -
• Threshold candidates: Length  12.5?  24.5?  30?  45?

61

Issues on multiple-valued attributes

 問題

 An attribute with multiple values is tend to be preferred by Gain(•)
 E.g., image date (2019/10/10 etc.) is used as an attribute

 One approach: GainRatio to replze Gain

 Almost proportional to SplitInformation: c = | values(A) |
 i.e., handicapped to attribute with many values

• e.g., example: c1 = cDate = n and c2 = 2
• SplitInformation (A1) = log(n), SplitInformation (A2) = 1
• When Gain(D, A1) = Gain(D, A2) , GainRatio (D, A1) << GainRatio (D, A2)

 i.e., GainRatio(•) can be used to express selection bias (to a smaller splits)

     

   
 

  



































values(A)v

vv

values(A)v
v

v

D
D

D
D

AD,mationSplitInfor

AD,mationSplitInfor
AD,GainAD,GainRatio

DH
D
D

DHAD,Gain

log

62

Note: Gini index

 Another partition index
 n is the number of classes
 Gini(D) becomes smaller when the distribution in D become more biased,

i.e., inpure.

63

Not "Gini coefficient" Attributes with weights

 Weights varies in applications
 Medical: Temperature costs 1000JPY; BloodTest 1500JPY; Biopsy 50000JPY

• Need to consider invasiveness
• Risk to patient (e.g., Amniocentesis)

 Other cost
• Sampling time: e.g., Robot sonar (range finder, etc.)
• Risk to artifacts, organisms (what kind of information is to be gathered)
• Related fields (e.g., tomography): noninvasive test

 How to build a consistent tree with low expected cost
 One approach: replace gain with Cost-Normalized-Gain
 Example of cost-normalization

• [Nunez, 1988]:

• [Tan and Schlimmer, 1990]:

where w defines importance of cost

   
 AD,Cost

AD,GainAD,Gain-Normalized-Cost
2



 
 

  
 0,1w

AD,Cost
AD,Gain-Normalized-Cost w

AD,Gain





1
1-2

64

Missing value
 Problem: what if attribute A has no value?

 Often, during training or test, not all values are obtained
 Example: medical diagnosis

• <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>
• Value is missing or with low reliability

 Missing value: at training versus at test
• training: calculate Gain (D, A) when for some x  D, the value of A is not givem
• test: without knowing the value of A , classify a new sample

 Solution: including prediction to calculate Gain(D, A)

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild ??? Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

65

Missing values: approach

 Use training examples when going down from root to leaf
 For every attribute to be considered, if its value is missing, make a prediction
 The prediction is done based on the samples assigned to the node

 Predict the most likely value of x.A
 Policy 1: Suppose node n tests attribute A, take majority of values of A which go through n
 Policy 2 [Mingers, 1989]: Suppose at n , A is tested, take majority of values of A, which go

through n with the same label as x .

 Disperse predictions
 Hedging: distribute predictions according to the distribution of values
 Assign probability pi to possible values vi of x.A [Quinlan, 1993]

• Assign fraction pi of x to each descendent of the node
• Calculate Gain (D, A) or Cost-Normalized-Gain (D, A) based on these values.

 In any of these approaches, a new sample is classified in this way

66

Missing values: an example
 Predict most probable value of x.A

 Plan 1: Humidity = Normal
 Plan 2: Humidity = High (No examples are all High)
 (Which gives the largest Gain ? High: Gain = 0.97, Normal: Gain < 0.97)

 Weigh with probability
 0.5 High, 0.5 Normal
 Gain < 0.97

 A test sample: <?, Hot, Normal, Strong>
 5/14 Yes + 4/14 Yes + 5/14 No = Yes

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild ??? Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

Humidity? Wind?Yes

YesNo YesNo

Outlook?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-]

67

Missing values: an example
 Predict most probable value of x.A

 Plan 1: Humidity = Normal
 Plan 2: Humidity = High (No examples are all High)
 (Which gives the largest Gain ? High: Gain = 0.97, Normal: Gain < 0.97)

 Weigh with probability
 0.5 High, 0.5 Normal
 Gain < 0.97

 A test sample: <?, Hot, Normal, Strong>
 1/3 Yes + 1/3 Yes + 1/3 No = Yes
 5/14 Yes + 4/14 Yes + 5/14 No = Yes

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild ??? Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

Humidity? Wind?Yes

YesNo YesNo

Outlook?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-]

68

What is learning?

69

Induction

 According to OED (Oxford English Dictionary)
 the process of inferring a general law or printciple from the

observations of particular instances
 The above one refers to inductive inference
 inductive reasoning is： the process of reassigning a

probability (or credibility) to a law or proposition from the
observation of particular events

70

Induction

 Induction is:
to obtain regularity implicit in data, e.g.,
 experimental observations of free falling objects→ Newton's law of universal gravitation

(well, not really. The invention is combination and
elaboration of Kepler’s theory and others)

 Tycho Brahe’s observations→	Johannes Kepler’s laws

 How should we measure the correctness
of inductions?

71

Search in hypothesis space by ID3

 Searching Problem
 Target of the search is all the decision trees, which can represent any Boolean functions.

• Pros: expressiveness; flexibility
• Cons: heavy computation; huge, include (many) incomprehensible trees

 Objective: to find the best one (minimal and consistent tree)
 Obstacle: to find out this tree is NP-hard
 Tradeoff

• Use of heuristics (a guide of search to tell us which is the first to see)
• Use of greedy algorithm
• That is, hill-climbing (gradient “ascent” but discrete) without backtrack

 Statistical Learning
 Decisions are made based on statistics p+, p- of Dv

 In ID3, all the data is used
 Robust to noisy data if some measures (simple and easy to use are taken)

... ...

... ...

72

Inductive bias in ID3

 Heuristics in search is an inductive bias
 Suppose H is a power set of X (set of all the subesets)
  No inductive bias? There is!…

• Preference to shorter trees (termination condition)
• Preference to put attributes with high information gain close to the root
• Gain(•): a heuristics that represent the bias of ID3

 Inductive bias of ID3
• Preference to some hypothesis are expressed by a heuristic function
• Another type: restrict hypothesis space H (e.g., normal form of propositional logic: k-CNF, etc.)

 Preference for shorter trees
 Selection of shortest tree among the ones consistent with data
 Occam’s razor bias: Entities should not be multiplied without necessity

Assumption in learning phase to
suggest which hypothesis to be
chosen, prioritized, or discarded.
Without this, no meaningful result
is obtained, because there are
infinite hypotheses.

OK, but isn’t it
unreasonable to
adopt an assumption
that is not supported
by data

If a bias is inevitable,
which bias is better?

73

Learning and bias

 Bias: some order among hypotheses
 Preference: plural of hypothesis at the same time
 Searching: when to evaluate one by one

 Hypotheses consistent with data are, in
general, many. Hence we need a bias.
 Unless we use all the hypotheses, we need bias to

select (and not to select) hypothesis

learning：

Data → hypothesis

74

OK, but isn’t it unreasonable to adopt an
assumption that is not supported by data

If a bias is inevitable, which bias is better?

Occam’s razor

 How people generally say
 Entities should not be multiplied beyond necessity.

 By Bertrand Russell
 It is vain to do with more what can be done with fewer.

 Most common interpretation
 Among the theories that are consistent with the observed

phenomena, one should select the simplest theory.

75

What Isaac Newton said

 We are to admit no more causes of natural
things than such as are both true and
sufficient to explain the appearances. To this
purpose the philosophers say that Nature
does nothing in vain, and more is in vain
when less will serve; for Nature is pleased
with simplicity, and affects not the pomp of
superfluous causes.

76

Occam’s razor: a preference bias
 Two types of biases: preference biases and language biases

 preference bias
• It is implicitly incorporated in learning algorithms
• In other words: implying searching order

 language bias
• It is implicitly incorporated in representation of knowledge (hypothesis)
• In other words: restriction of searching space
• Alias: restriction bias

 Occam’s Razor: pros
 Shorter hypothesis are fewer than longer hypothesis

• E.g., bit sequences of length n are half of those of length n+1 where n  0.
• If a short hypothesis fits the data well, it may not be accidental.

• Short hypothesis are scarce, phenomena explainable by them are scarce
• If a long hypothesis fits the data well, it may possibly be accidental (Ex.: DT with 200 nodes for

|D| = 100)
• If long enough, one of the hypothesis fits to data surely, but which one fits is probabilistic and rare.

 Obtained and discarded
• Other things being equal, complex model cannot generalize as well as simple one.
• Assuming that later more flexibility to data will not required 77

Occam’s razor: two problems

 Occam’s Razor: cons
 Usually size(h) depends on H . For the same h, size(h) differs when H differs. Reaonable?
 Is “fewer” a justification for the preference to smaller?

 Is Occam’s Razor Well-Defined?
 (Internal) knowledge representation defines which h is short --- arbitrary

 A test “(Sunny  Normal-Humidity)  Overcast  (Rain  Light-Wind)” is length 1 or not?

 One answer: fix a language; At long enough side, long hypothesis is long.
 Rebuttal： we are discussing “short” hypothesis, not “long” ones

 Why not small hypothesis space but short hypothesis?
 Because if H is small, we still argue in the same way as H is “large.”
 Note first that we are thinking about infinite space.

 If H is finite and practically small, its usefulness is very limited. If it is finite, we suppose it is huge.

 Note also that any hypothesis is finite length and the hypotheses with the same size(h) is
finite.
 If we enumerate “small” set and “large” set in ascending order of length in parallel, we could see intuitively, that the

hypothesis are not so much different.

78

Principle of plenitude

 Epicurus and others
 If more than one theory is consistent with the

observations, keep all theories. [M. Hutter, Universal
Artificial Intelligence, 2005」

 One reason: there is no specific reason we choose
one from the others

 (your personal exercise) Compare it with Bayesian
approach

79

