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Decision tree

 Structure and construction

 Through the decision tree, the followings will 
be explained:
 Over-training/learning
 Bias vs. variance
 Occam’s razor etc. 
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Materials for decision tree

 Training samples/data
 Instance or sample
 supposed to be sampled from a population according 

to its (unknown) probability distribution
 a set of independently sampled samples

 Hypothesis space (set)

 Measure between desired output and prediction
 Error, error rate, cost, etc.

 New (unseen) samples/data
 Used for evaluation of learned models.
 Different but sampled likewise
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Methods to learn

 Hypothesis set
 A set of candidate answers (=hypothesis) of ML

 E.g., a decision tree ＝ a hypothesis
 All possible decision trees ＝ a hypothesis set

 Learning process
 Pick up a hypothesis,
 Check if it explains training data well, 
 Hand it as an answer if it is satisfactory, and
 Repeat the process if it is not.
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Decision Trees
 It is a classifier

 sample: a vector of attribute (or feature) values + label
 Internal Nodes: a test of attribute values

 typical: if an attribute has a certain value or not (e.g., “Wind = ?”)
 others: inequality

 Branches: True/False, values, value range, etc.
 e.g., “Wind = Strong”, “Wind = Light”)

 Leaves: class labels, i.e. classification result

Outlook?

Humidity? Wind?Maybe

Sunny Overcast Rain

YesNo

High Normal

MaybeNo

Strong Light

PlayTennis
(decision tree 

corresponding to the 
above table)

Note: comprehensibility

Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Cloudy Hot High Weak Yes
D4 Rainy Mild High Weak Yes
D5 Rainy Cool Normal Weak Yes
D6 Rainy Cool Normal Strong No
D7 Cloudy Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rainy Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Cloudy Mild High Strong Yes
D13 Cloudy Hot Normal Weak Yes
D14 Rainy Mild High Strong No

T.Mitchell, 1997
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Decision tree is a Boolean function
 Decision tree is a Boolean function

 expressiveness: Any Boolean function (literal is a test on an attribute) can be expressed
 Why? 

• Decision tree is directly interpreted as a  Disjunctive Normal Form (DNF) 
• The following one: (Sunny  Normal-Humidity)  Overcast  (Rain  Light-Wind)

Outlook?

Humidity? Wind?Yes

Sunny Overcast Rain

YesNo

High Normal

YesNo

Strong Light
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Decision boundary １

 Instances are in general expressed with discrete features.
 Continuous values features are treated as range

 Typical value types
• nominal ({red, yellow, green})
• quantized ({low, medium, high})

 Continuous values
• Discretization and/or vector quantization: divide by thresholds

ex. U. M. Fayyad and K. B. Irani, Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning, Proc. 13th IJCAI (1993).
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Decision boundaries ２

 Continuous values can be used directly
• In the case, a branch designates a value range.

• At each node, the samples are tested with an attribute against a 
threshold. 

• The thresholds are determined in learning phase.

• Decision boundaries are, therefore, piecewise linear (hyper plane)
 Sample space is divided by hyperplanes perpendicular to axes.
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Learning process is hypothesis 
output process

 In general, learning process is a process to output hypotheses. They 
may be output
 Just once,
 Predefined times, or
 Infinitely many times.

 When hypothesis space is finite (# of hypotheses in the space is finite)
 Try out all the hypotheses, and output the best one, or
 Try out a part of it, and output the best one.

 In general, although finite, exhaustive search is impossible

 When the hypothesis space is infinite
 Try just a part of it, and
 Continously output tried hypothesis with the evaluation result infinitely

 In either case, the order of search is critically important
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Selection order of hypothesis

 Output infinitely many times
 Seemingly, only one hypothesis is output, because

 When a terminal condition is satisfied, halts and outputs
 Why infinitely many times?

 The optimum is a limit of infinite repetitions.
 Search order is critical

 The later the better is what we require
 If so, we can stop the sequence at any time

 In reality, we cannot do it
 Bias

 Any order we take, our best hypothesis has 
certain bias, which is called, training/learning bias
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For decision trees

 Hypothesis space is finite
 Discrete attributes only: one attribute could 

appear only once on a path from root to a leaf.
 When continuous attributes exist: if we count 

trees once which give the same prediction to the 
same sample, the trees are finite.

 But exhaustive check is infeasible
 Too many

 How to treat?
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DT-learning: top-down induction (ID3)

 Algorithm Build-DT ( Examples, Attributes)  
 Recursively applied to partial trees

 Examples: a subset of training set, Attributes: a subset of all the attributes
IF the labels of Examples are the same, THEN RETURN (the leaf with the label )
ELSE

IF Attributes is empty THEN RETURN (the leaf with the majority label)
ELSE

select a best attribute A as a root. Build trees as follows and connect them.
FOR each value v of A

Build branches corresponding to conditions A = v
IF {x  Examples | x.A = v } = Ø

THEN build a leaf with majority label
ELSE Build-DT ({x  Examples | x.A = v }, Attributes – {A})
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Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Cloudy Hot High Weak Yes
D4 Rainy Mild High Weak Yes
D5 Rainy Cool Normal Weak Yes
D6 Rainy Cool Normal Strong No
D7 Cloudy Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rainy Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Cloudy Mild High Strong Yes
D13 Cloudy Hot Normal Weak Yes
D14 Rainy Mild High Strong No

DT-learning: recursion

D13

D12 D11

D10
D9

D4

D7

D5

D3D14

D8

D6
D2

D1

D13

D12
D11

D10

D9
D4D7

D5

D3

D14

D8 D6

D2

D1

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]
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[21+, 5-] [8+, 30-]

DT-learning: best attributes? (ID3)

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

 Which attribute is best?
 For example, which one is better?
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What is the best attribute?

 As a result of selecting the attribute, the smaller the 
built tree is, the better
 A smaller tree is better. Why?

 A detailed explanation will be given later. Here, a tree is smaller →	
paths to leaves are shorter → a fewer attributes are used for 
decision → closer to reality

 In case of binary classification
 Comparing [10+,10] to [0+,20], 

which will result in smaller tree?
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Best attribute?

 Various functions
 Suppose the x-axis represents ratio 

of "+" class. The peak should come 
at 0.5. Axial symmetric with 0.5.

 Entropy (average information 
content) function is the typical one
H(D)  -p+ logb (p+) - p logb (p)

0.0
0.5 1.0

木
の
大
き
さ

＋の割合
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[21+, 5-] [8+, 30-]

Best attribute: calculation

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

Entropy before the selection log log 0.9936507

0.7062741   0.7424876 0.9366674   0.6193822
26/64           38/64 51/64           13/64

0.7277758 0.8722188

Entropy after the selection of attribute
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Entropy: information theoretic def.

 Elements considered
 D: a set of samples {<x1, c(x1)>, <x2, c(x2)>, …, <xm, c(xm)>}
 p+ = Pr(c(x) = +), p = Pr(c(x) = )  

 Definition
 H is defined on a probability distribution p
 For samples in D , frequency of labels + and – be expressed by p+ and p respectively
 The entropy of D is:

H(D)  -p+ logb (p+) - p logb (p)

 Unit?
 Depends on the basis of log (bits for b = 2, nats for b = e.)
 1 bit is necessary to encode a sample in its worst case (p+ = 0.5)
 If uncertainty is small (e.g., p+ = 0.8), less than 1 bit is necessary
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 A measure for uncertainty/ambiguity; higher for higher uncertainty
 Target of measure

• purity: how the sample set is close to status being of just one label
• impurity (disorder): how the set is close to status where the labels are not predictable

 measure: entropy
• Positively correlate with:  impurity,  uncertainty, irregularity,  unpredictability
• Negatively correlate with:  purity,  certainty, regularity,  predactibility

 Example
 For simplicity, suppose that H = {0, 1}, and distributed according to a distribution Pr(y) 

• Same as the case with (more than two) discrete labels
• Even continuous probability distribution: differential entropy (integration for sum)

 The most pure cases about y are one of the two:
• Pr(y = 0) = 1, Pr(y = 1) = 0
• Pr(y = 1) = 1, Pr(y = 0) = 0

 The distribution with the least purity
• Pr(y = 0) = 0.5, Pr(y = 1) = 0.5
• The most: inpurity/uncertainty/irregularity/unpredictability
• Entropy function: concave (“upward convex”)

Entropy: intuitive explanations

0.5 1.0
p+ = Pr(y = +)

1.0

H
(p

) =
 E

nt
ro

py
(p

)
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Information gain: definition

 Partition according to attribute values
 remember: partition of D is, a set of mutually exclusive subsets whose union is D
 target: reduction of uncertainty/impurity by partition with values of attribute A

 Definition
 Information gain by attribute A is expected reduction of entropy by partition based on A

where Dv is {x  D | x.A = v }, i.e.,  a set of samples in D whose value for attribute A is v
 Note: entropy values are adjusted according to the size of subset Dv of A

 Because entropy value is a value per one element of the set.

 Which attribute is better?

         




















 

 values(A)v
vv

values(A)v
v

v DHDDHD
D

DH
D
D

DH AD,Gain 1

[21+, 5-] [8+, 30-]

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]
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Example
 Training sample set for a concept PlayTennis

 ID3  Build-DT where information gain function Gain(•) is used
 Let us see how ID3 works

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No
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Building decision tree for PlayTennis
by using ID3 (1)

 Select an attribute for the root node

 Prior (unconditioned) distribution: 9+, 5-
 H(D) = -(9/14) log (9/14) - (5/14) log (5/14) bits = 0.94 bits
 H(D, Humidity = High) = -(3/7) log (3/7) - (4/7) log (4/7) = 0.985 bits
 H(D, Humidity = Normal) = -(6/7) log (6/7) - (1/7) log (1/7) = 0.592 bits
 Gain(D, Humidity) = 0.94 – ( (7/14) * 0.985 + (7/14) * 0.592 ) = 0.151 bits
 similarly, Gain (D, Wind) = 0.94 – ( (8/14) * 0.811 + (6/14) * 1.0 ) = 0.048 bits

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

     
 













values(A)v
v

v DH
D
D

DH AD,Gain

[6+, 1-][3+, 4-]

Humidity

High Normal

[9+, 5-]

[3+, 3-][6+, 2-]

Wind

Light Strong

[9+, 5-]
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Building decision tree for PlayTennis
by using ID3 (2)

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

 Select an attribute for the root node

 Gain(D, Humidity) = 0.151 bits
 Gain(D, Wind) = 0.048 bits
 Gain(D, Temperature) = 0.029 bits
 Gain(D, Outlook) = 0.246 bits

 Select the next attribute (root of subtree (child tree))
 Continue until all the attributes are used （on a path to the leaf）or purity=100%
 purity = 100% means just one label for the training samples for the leaf
 By the way, could Gain(D, A) < 0 happen?

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No
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DT-learning: recursive application

D13

D12 D11

D10
D9

D4

D7

D5

D3D14

D8

D6
D2

D1

D13

D12
D11

D10

D9
D4D7

D5

D3

D14

D8 D6

D2

D1

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

Day Outlook Temperature Humidity Wind PlayTennis? 
1 Sunny Hot High Light No 
2 Sunny Hot High Strong No 
3 Overcast Hot High Light Yes 
4 Rain Mild High Light Yes 
5 Rain Cool Normal Light Yes 
6 Rain Cool Normal Strong No 
7 Overcast Cool Normal Strong Yes 
8 Sunny Mild High Light No 
9 Sunny Cool Normal Light Yes 
10 Rain Mild Normal Light Yes 
11 Sunny Mild Normal Strong Yes 
12 Overcast Mild High Strong Yes 
13 Overcast Hot Normal Light Yes 
14 Rain Mild High Strong No 
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Building decision tree for PlayTennis
by using ID3 (3)

 Select an attribute for the root node (for subtree)

 convention: 0 log (0/a) = 0
 Gain(DSunny, Humidity) = 0.97 - (3/5) * 0 - (2/5) * 0 = 0.97 bits
 Gain(DSunny, Wind) = 0.97 - (2/5) * 1 - (3/5) * 0.92 = 0.02 bits
 Gain(DSunny, Temperature) = 0.57 bits

 Top-down and recursive application
 If there are n discrete attributes only, (n) partitions are enough for a path.
 At each level of a tree, there exits at most one scan through a whole data

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No
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Building decision tree for PlayTennis
by using ID3 (4)

Humidity? Wind?Yes

YesNo YesNo

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

Outlook?
1,2,3,4,5,6,7,8,9,10,11,12,13,14

[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-] 26

For broader fields

 Assumptions in the algorithm ID3 and its avoidance.
 Discrete output →	continuous output

• Continuous values can be output
• E.g. Regression trees [Breiman et al, 1984]

 Discrete input→	continuous input
 Quantization methods
 Inequality instead of equality

 Scale-up
 Knowledge discovery and/or data mining in very large DB (VLDB)
 Positive: there are good algorithm to process many samples
 Negative: too many attributes is a headaches

 Desired tolerance
 Tolerance to noisy data (classification noise  incorrect labels; attribute noise 

inaccurate/low frequent data).
 Tolerance to missing data
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Decision tree in R

 As R language packages, we have tree, rpart, 
and mvpart which is an extension of rpart to 
multivariate regression trees
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Examples: tree
data(iris)
(iris.tr<-tree(Species~.,data=iris))
plot(iris.tr,type="u"); text(iris.tr)

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor

virginica virginica virginica

(iris.tr1<-snip.tree(iris.tr,nodes=c(12,7)))
plot(iris.tr1,type="u");text(iris.tr1)

1) root 150 329.600 setosa ( 0.33333 0.33333 0.33333 )  
2) Petal.Length < 2.45 50   0.000 setosa ( 1.00000 0.00000 0.00000 ) *
3) Petal.Length > 2.45 100 138.600 versicolor ( 0.00000 0.50000 0.50000 )  

6) Petal.Width < 1.75 54  33.320 versicolor ( 0.00000 0.90741 0.09259 )  
12) Petal.Length < 4.95 48   9.721 versicolor ( 0.00000 0.97917 0.02083 )  
24) Sepal.Length < 5.15 5   5.004 versicolor ( 0.00000 0.80000 0.20000 ) *
25) Sepal.Length > 5.15 43   0.000 versicolor ( 0.00000 1.00000 0.00000 ) *

13) Petal.Length > 4.95 6   7.638 virginica ( 0.00000 0.33333 0.66667 ) *
7) Petal.Width > 1.75 46   9.635 virginica ( 0.00000 0.02174 0.97826 )  
14) Petal.Length < 4.95 6   5.407 virginica ( 0.00000 0.16667 0.83333 ) *
15) Petal.Length > 4.95 40   0.000 virginica ( 0.00000 0.00000 1.00000 ) *

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

setosa

versicolor virginica

virginica

library(tree)

deviance=  ii pn log2
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Examples: tree

iris.label<-c("S", "C", "V")[iris[, 5]]
plot(iris[,3],iris[,4],type="n")
text(iris[,3],iris[,4],labels=iris.label)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)
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1.
0

1.
5

2.
0

2.
5

iris[, 3]

iri
s[

, 4
]

setosa

versicolor virginica

virginica

iris.color<-c("red","blue","green")[iris[,5]]
plot(iris[,3],iris[,4],col=iris.color)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)
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Examples: tree

> library(tree)
> data(cars)
> cars.tr<-tree(dist~speed,data=cars)
> print(cars.tr)
node), split, n, deviance, yval

* denotes terminal node

1) root 50 32540.0 42.98  
2) speed < 17.5 31  8307.0 29.32  
4) speed < 12.5 15  1176.0 18.20  
8) speed < 9.5 6   277.3 10.67 *
9) speed > 9.5 9   331.6 23.22 *

5) speed > 12.5 16  3535.0 39.75 *
3) speed > 17.5 19  9016.0 65.26  
6) speed < 23.5 14  2847.0 55.71 *
7) speed > 23.5 5  1318.0 92.00 *

> plot(cars.tr,type="u")
> text(cars.tr)
> plot(cars.tr,type="u")
> text(cars.tr)
> 

library(tree)
data(cars)
cars.tr<-tree(dist~speed,data=cars)
print(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)

|speed < 17.5

speed < 12.5

speed < 9.5

speed < 23.5

10.67 23.22

39.75 55.71 92.00
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Examples: tree

plot(cars$speed,cars$dist)
partition.tree(cars.tr,add=T,col=2)

5 10 15 20 25
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Examples: tree

(cars.tr1<-prune.tree(cars.tr,best=4))
plot(cars.tr1); text(cars.tr1,all=T)

plot(cars$speed,cars$dist)
partition.tree(cars.tr1,add=T,col=2)

|speed < 17.5

speed < 12.5 speed < 23.5

42.98

29.32

18.20 39.75

65.26

55.71 92.00
5 10 15 20 25

0
20

40
60

80
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Evaluation of hyotheses

 We need to evaluate hypotheses/models
 Hypotheses/models are something we are going 

to use
 We want to use, in some reasonable sense, good, 

hypothesis/model with high accuracy/credibility
 What evaluation method do we have?
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Basic concepts
before Precision/Recall 

circle Other than circle

true:

Prediction 
by a model:

circle
others
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TP, TN, FP, FN

circle Other than circles

true:

circle
others

TP TNFP

FNPrediction 
by a model:

TP: True Positive
TN: True Negative
FP: False Positive
FN: False Negative 

predictionevaluation

37



Confusion matrix

True value

P N

Prediction 
by a model

P
TP

(True 
Positive)

FP
(False 

Positive)

N
FN

(False 
Negative)

TN
(True 

Negative)

FPTP
TP


Precision

FNTP
TP


Recall FNTNFPTP
TNTP




Accuracy
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Precision/Recall Tradeoff and
F-measure
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Confusion matrix

True value

P N

Prediction

P
TP

(True 
Positive)

FP
(False 

Positive)

N
FN

(False 
Negative)

TN
(True 

Negative)

FPTP
TP


Precision

FNTP
TP


Recall FNTNFPTP
TNTP




Accuracy

帰無仮説は、「陽性でない」
（陽性であることを示したいから）

第一種の過誤=棄却した(陽性だと言った)が、それは誤り
第二種の過誤=受理した(陰性だと言った)が、それは誤り

positiveと判定

Type 1 error

Type 2 error

TNFP
FP


 FPR

TPFN
FN


 FNR

1-=specificity
=TNR=

1-=sensitivity
=TPR= TPFN

TP


TNFP
TN


40

ROC curve

 Receiver operating characteristics
 The ROC curve was first developed by electrical 

engineers and radar engineers during World War II for 
detecting enemy objects in battlefields and was soon 
introduced to psychology to account for perceptual 
detection of stimuli.
 https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Radar ROC

42

https://www.youtube.com/watch?v=BKFHZJPKioQ

https://slideplayer.com/slide/9562694/

0.7

ROC curve

0 1

1

False Positive rate

True
Positive

rate

# true positives
# true positives + # false negatives

0.1
# false positives

# false positives + # true negatives

ROC curve  (“Receiver Operating Characteristics”)

ROC Curves
• Changing the threshold, count the samples
• The larger the area under the curve (AUC), the better
• Suited for comparison of different learning methods

TPFN
FN


 FNR

1-=sensitivity

TNFP
FP


 FPR

1-=specificity

FNTP
TP


Recall

TP

FN

FP

TN
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Training vs. generalization error

 Training error: The training error is the mean 
of errors over the training sample 

 E.g., 1⁄ ∑
 Easy to calculate

 Generalization error: Expected prediction 
error over an independent test sample :
 E.g., 

44 Elements of Statistical Learning 45



Over-learning/training/fitting

 To learn what should not be learnt
 What should not be learnt

 Bias existing in the training data
 Because training data is a finite subset of infinite set 

(population), the training data has certain bias which is not in 
the population.

 Error existing in training data
 In reality, any training set contains errors in labels

 ML tends to learn as much as it can
 Because it has very high learning capability

 E.g., it has a large number of adjustable parameters

46

bias

noise
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Illustrative example

Piecewise 
linear

4-th order 
polynomial

2nd order 
polynomial

データ

# parameters 24+3=11 5 3+degree

多分過学習多分過学習？
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 Example: induced tree

 Suppose that a noisy example exists in the training set
 sample 15: <Sunny, Hot, Normal, Strong, ->

• This is noisy . The correct label is +.
• The tree built without it misclassifies this “new” and “noisy” sample.

 How should the tree be updated (how should incremental learning be implemented)?
 A new hypothesis h’ = T’ may deteriorate the performance than h = T ?

Overtraining in DT: an example

Temp?

Hot CoolMild
9,11,15
[2+,1-]

15
[0+,1-]

No Yes
11

[1+,0-]

9
[1+,0-]

Yes
It may fit to noise or 
accidental regularity

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

Decision tree for
PlayTennis

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]

Yes
9,11

[2+,0-]

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]
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Overlearning in induction

 Definition 
 A hypothsis h over-learns a training set D (overfits to D) iff there exists another hypothesis h’

such that errorD(h) < errorD(h’) and errortest(h) > errortest(h’) hold.
 Possible cause: the training set is too small (decision relying on too scarce information); noisy 

data; simply accidental
 How to avoid?

 prevention
• Avoid overlearning before it occurs
• Select only important and/or relevant attributes (i.e., useful for a model)

• Caution: a chicken-and-egg problem; need a measure to predict relevance

 circumvention
• When it seems to happen, just go around it
• Prepare a test set, when a new h behaves worse, stop to learn

 recovery
• Wait until it happens, detect it, and recover from it
• Build a model, and discover and delete elements that cause over-learning (prune)
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 How to avoid?
 prevention

• Select just relevant attributes (i.e., relevant to the decision tree)
• Prediction of relevance: try and error, add and delete

 avoidance
• Prepare validation set, and if prediction accuracy of h decreases, stop learning

 How to select “best” model (decision tree)
 Method described above: validation set is mutually exclusive to the learning set
 Another method: Minimum Description Length (MDL): 

minimize: size(h  T) + size (misclassifications (h  T))

DT learning: avoiding over-learning

Size of tree (number of nodes)
0        10       20       30       40       50       60       70       80       90       100

A
cc

ur
ac

y

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

On training data

On test data
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DT learning: avoiding over-learning

 Two basic approaches
 Pre-pruning (avoidance): Stop growing the tree in the middle, i.e., when there is not enough 

data to select reliably the next attribute.
 Post-pruning (recovery): Prune an over-grown tree, i.e., cut down branches whose evidence 

to exist is not enough

 Evaluation of subtrees to be pruned
 Cross-validation: divide data exclusively into training and validation dataset, and repeat
 Statistical test: test if the observed regularity is accidental or not
 Minimum Description Length (MDL)

• Increase of the complexity of a hypothesis T is larger/smaller than the complexity to describe 
exceptions of the data to be explained?

• Tradeoff: increase of the description of the larger model versus that of increased residuals
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Reduced-Error Pruning

 Post-Pruning, Cross-Validation Approach
 Divide the data given into training set and validation set
 Function Prune(T, node)

 Subtree rooted with node is pruned
 Build a leaf with node . (its label is the majority label)

 Algorithm Reduced-Error-Pruning (D)
 Diveide D into Dtrain (training / “growing”), Dvalidation ( validation / “pruning”)
 Apply ID3 to Dtrain to build a complete tree T
 UNTIL accuracy measured with Dvalidation decreases DO

FOR an internal node candidate inT
Temp[candidate]  Prune (T, candidate)
Accuracy[candidate]  Test (Temp[candidate], Dvalidation)

T  T’  Temp 中で Accuracy が最良のもの

 RETURN (pruned) T
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Effects of Reduced-Error Pruning

 Decrease of test errors by Reduced-Error Pruning 

 Pruning of nodes decrease the test error
 Note:  Dvalidation is different from Dtrain and Dtest

 Pros and cons
 Pros:  The smallest among the most accurate T’ (a subtree of T) is obtainable
 Cons: smaller dataset is used to build T , in case the data is scarce.  

• Could we afford Dvalidation ? 
• If allowable data is not enough (Dtrain is not large enough), the pruning make error larger

Size of tree (number of nodes)
0        10       20       30       40       50       60       70       80       90       100

A
cc

ur
ac

y
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

On training data

On test data

Post-pruned tree
on test data
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Rule Post-Pruning

 Often used
 Well-known countermeasure for overfitting 
 C4.5 uses a derived version. C4.5 is a successor of ID3.

 Algorithm Rule-Post-Pruning (D)
 Build T from D (by ID3 ) – to adapt to D as close as possible (over-learning is allowed)
 Convert T to an equivalent rule set (a rule is for a path from the root to a leaf)
 Delete, independently, tests (conditions) as many as possible while estimated accuracy 

increases
 Sort the pruned rules

• Sort them according to estimated accuracy
• In rows, apply them to Dtest
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Convert a tree to a rule set

 Syntax of the rule set
 Left-hand side: conditions (equality tests on attributes form conjunctive formula)
 Right-hand side: class labels

 Example
 IF (Outlook = Sunny)  (Humidity = High) THEN PlayTennis = No
 IF (Outlook = Sunny)  (Humidity = Normal) THEN PlayTennis = Yes
 …

Yes

Overcast

Outlook?

Humidity?

Sunny

No

High

Yes

Normal

Wind?

Rain

No

Strong

Yes

Light

Decision tree for 
PlayTennis
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Replications in decision tree

 In decision tree: a shortcoming in representation
 Decision tree is not the simplest representation method
 point: replication of attributes is necessary

 Example of attribute replication
 e.g., Disjunctive Normal Form (DNF): (a  b)  (c  d  e)
 (one of) conjunctions should be replicated as subtrees

 Partial solutions
 Form a a new attribute
 Alias: constructive induction (CI)
 Ref. Chap. 10, T. Mitchell

a?

b?c?

c?

d?

e?

d?

e?

+-

+

+

-

-

-

-

-

0 1

0 1

0 1

0 1 0 1

0 1

0

0 1
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A bit of constructive induction
 Synthesize a new attribute

 Synthesize a new attribute from the conjunction of the two attributes just before a “+ leaf”
 Also called feature construction

 Example
 (a  b)  (c  d  e)
 A = d  e
 B = a  b

 When repeated
 C = A  c
 Correctness? 
 Time complexity?

a?

b?c?

c?

d?

e?

d?

e?

+-

+

+

-

-

-

-

-

0 1

0 1

0 1

0 1 0 1

0 1

0

0 1

B?

c?

A?-

+

0 1

0 1

0 1
-

+

B?

C?

- +

0 1

0 1
+
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Decision tree: other topics

 Topics which common to other machine 
leaning methods
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Continuous attributes

 Two methods to deal with continuous attributes
 Discretization 

• Divide attribute values into ranges
• e.g., {high  Temp > 35º C, med  10º C < Temp  35º C, low  Temp  10º C}

 On internal nodes, the thresholds are used for attribute tests
• e.g., A  a makes two subsets A  a and A > a
• Information gain is calculated, too.

 How to find the partition that maximizes information gain
 FOR each continuous attribute A

Split samples {x  D} according to values x.A
FOR each ordered pair (l, u) of values of A, which has different labels

evaluate information gain of partition by mid-point, i.e., DA  (l+u)/2, DA > (l+u)/2

 Example 
• A  Length: 10 15 21 28 32 40 50
• Class: - + + - + + -
• Threshold candidates: Length  12.5?  24.5?  30?  45?
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Issues on multiple-valued attributes

 問題

 An attribute with multiple values is tend to be preferred by Gain(•)
 E.g.,  image date ( 2019/10/10 etc. ) is used as an attribute

 One approach: GainRatio to replze Gain

 Almost proportional to SplitInformation: c = | values(A) |  
 i.e., handicapped to attribute with many values

• e.g., example: c1 = cDate = n and c2 = 2
• SplitInformation (A1) = log(n), SplitInformation (A2) = 1
• When Gain(D, A1) = Gain(D, A2) , GainRatio (D, A1) << GainRatio (D, A2)

 i.e., GainRatio(•) can be used to express selection bias (to a smaller splits)
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Note: Gini index

 Another partition index
 n is the number of classes
 Gini(D) becomes smaller when the distribution in D become more biased, 

i.e., inpure.
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Not "Gini coefficient" Attributes with weights

 Weights varies in applications
 Medical: Temperature costs 1000JPY; BloodTest 1500JPY; Biopsy 50000JPY

• Need to consider invasiveness
• Risk to patient (e.g., Amniocentesis)

 Other cost
• Sampling time: e.g., Robot sonar (range finder, etc.)
• Risk to artifacts, organisms (what kind of information is to be gathered)
• Related fields (e.g., tomography): noninvasive test

 How to build a consistent tree with low expected cost
 One approach: replace gain with Cost-Normalized-Gain
 Example of cost-normalization

• [Nunez, 1988]:

• [Tan and Schlimmer, 1990]:

where w defines importance of cost

   
 AD,Cost

AD,GainAD,Gain-Normalized-Cost
2



 
 

  
 0,1w

AD,Cost
AD,Gain-Normalized-Cost w

AD,Gain





1
1-2
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Missing value
 Problem: what if attribute A has no value?

 Often, during training or test, not all values are obtained
 Example: medical diagnosis

• <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>
• Value is missing or with low reliability

 Missing value: at training versus at test
• training: calculate Gain (D, A) when for some x  D, the value of A is not givem
• test: without knowing the value of A , classify a new sample

 Solution: including prediction to calculate Gain(D, A)

Outlook
[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

Day Outlook Temperature Humidity Wind PlayTennis? 
1 Sunny Hot High Light No 
2 Sunny Hot High Strong No 
3 Overcast Hot High Light Yes 
4 Rain Mild High Light Yes 
5 Rain Cool Normal Light Yes 
6 Rain Cool Normal Strong No 
7 Overcast Cool Normal Strong Yes 
8 Sunny Mild ??? Light No 
9 Sunny Cool Normal Light Yes 
10 Rain Mild Normal Light Yes 
11 Sunny Mild Normal Strong Yes 
12 Overcast Mild High Strong Yes 
13 Overcast Hot Normal Light Yes 
14 Rain Mild High Strong No 
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Missing values: approach

 Use training examples when going down from root to leaf
 For every attribute to be considered, if its value is missing, make a prediction
 The prediction is done based on the samples assigned to the node

 Predict the most likely value of x.A
 Policy 1: Suppose node n tests attribute A, take majority of values of A which go through n
 Policy 2 [Mingers, 1989]: Suppose at n , A is tested, take majority of values of A, which go 

through n with the same label as x .

 Disperse predictions
 Hedging: distribute predictions according to the distribution of values
 Assign probability pi to possible values vi of x.A [Quinlan, 1993]

• Assign fraction pi of x to each descendent of the node
• Calculate Gain (D, A) or Cost-Normalized-Gain (D, A) based on these values.

 In any of these approaches, a new sample is classified in this way
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Missing values: an example
 Predict most probable value of x.A

 Plan 1: Humidity = Normal
 Plan 2: Humidity = High ( No examples are all High)
 (Which gives the largest Gain ? High: Gain = 0.97, Normal: Gain < 0.97 ) 

 Weigh with probability
 0.5 High, 0.5 Normal
 Gain < 0.97

 A test sample: <?, Hot, Normal, Strong>
 5/14 Yes + 4/14 Yes + 5/14 No = Yes

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild ??? Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

Humidity? Wind?Yes

YesNo YesNo

Outlook?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-]
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Missing values: an example
 Predict most probable value of x.A

 Plan 1: Humidity = Normal
 Plan 2: Humidity = High ( No examples are all High)
 (Which gives the largest Gain ? High: Gain = 0.97, Normal: Gain < 0.97 ) 

 Weigh with probability
 0.5 High, 0.5 Normal
 Gain < 0.97

 A test sample: <?, Hot, Normal, Strong>
 1/3   Yes + 1/3  Yes + 1/3   No = Yes
 5/14 Yes + 4/14 Yes + 5/14 No = Yes

Day Outlook Temperature Humidity Wind PlayTennis? 
1 Sunny Hot High Light No 
2 Sunny Hot High Strong No 
3 Overcast Hot High Light Yes 
4 Rain Mild High Light Yes 
5 Rain Cool Normal Light Yes 
6 Rain Cool Normal Strong No 
7 Overcast Cool Normal Strong Yes 
8 Sunny Mild ??? Light No 
9 Sunny Cool Normal Light Yes 
10 Rain Mild Normal Light Yes 
11 Sunny Mild Normal Strong Yes 
12 Overcast Mild High Strong Yes 
13 Overcast Hot Normal Light Yes 
14 Rain Mild High Strong No 
 
 

Humidity? Wind?Yes

YesNo YesNo

Outlook?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-]
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What is learning?
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Induction 

 According to OED (Oxford English Dictionary)
 the process of inferring a general law or printciple from the 

observations of particular instances
 The above one refers to inductive inference
 inductive reasoning is： the process of reassigning a 

probability (or credibility) to a law or proposition from the 
observation of particular events
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Induction

 Induction is:
to obtain regularity implicit in data, e.g.,
 experimental observations of free falling objects→ Newton's law of universal gravitation

(well, not really. The invention is combination and 
elaboration of Kepler’s theory and others)

 Tycho Brahe’s observations→	Johannes Kepler’s laws

 How should we measure the correctness 
of inductions?

71

Search in hypothesis space by ID3

 Searching Problem
 Target of the search is all the decision trees,  which can represent any Boolean functions.

• Pros: expressiveness; flexibility
• Cons: heavy computation; huge, include (many) incomprehensible trees

 Objective: to find the best one (minimal and consistent tree)
 Obstacle: to find out this tree is NP-hard
 Tradeoff

• Use of heuristics (a guide of search to tell us which is the first to see)
• Use of greedy algorithm
• That is, hill-climbing (gradient “ascent” but discrete) without backtrack

 Statistical Learning
 Decisions are made based on statistics p+, p- of Dv

 In ID3, all the data is used
 Robust to noisy data if some measures (simple and easy to use are taken)

... ...

... ...
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Inductive bias in ID3

 Heuristics in search is an inductive bias
 Suppose H is a power set of X (set of all the subesets)
  No inductive bias? There is!…

• Preference to shorter trees (termination condition) 
• Preference to put attributes with high information gain close to the root
• Gain(•): a heuristics that represent the bias of ID3

 Inductive bias of ID3
• Preference to some hypothesis are expressed by a heuristic function
• Another type: restrict hypothesis space H (e.g., normal form of propositional logic: k-CNF, etc.)

 Preference for shorter trees
 Selection of shortest tree among the ones consistent with data
 Occam’s razor bias: Entities should not be multiplied without necessity

Assumption in learning phase to 
suggest which hypothesis to be 
chosen, prioritized, or discarded.
Without this, no meaningful result 
is obtained, because there are 
infinite hypotheses.

OK, but isn’t it 
unreasonable to 
adopt an assumption 
that is not supported 
by data

If a bias is inevitable,
which bias is better?
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Learning and bias

 Bias: some order among hypotheses
 Preference: plural of hypothesis at the same time
 Searching: when to evaluate one by one

 Hypotheses consistent with data are, in 
general, many. Hence we need a bias.
 Unless we use all the hypotheses, we need bias to 

select (and not to select) hypothesis

learning：

Data →  hypothesis
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OK, but isn’t it unreasonable to adopt an 
assumption that is not supported by data

If a bias is inevitable, which bias is better?



Occam’s razor

 How people generally say
 Entities should not be multiplied beyond necessity.

 By Bertrand Russell
 It is vain to do with more what can be done with fewer.

 Most common interpretation
 Among the theories that are consistent with the observed 

phenomena, one should select the simplest theory.
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What Isaac Newton said

 We are to admit no more causes of natural 
things than such as are both true and 
sufficient to explain the appearances. To this 
purpose the philosophers say that Nature 
does nothing in vain, and more is in vain 
when less will serve; for Nature is pleased 
with simplicity, and affects not the pomp of 
superfluous causes.
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Occam’s razor: a preference bias
 Two types of biases: preference biases and language biases

 preference bias
• It is implicitly incorporated in learning algorithms
• In other words: implying searching order

 language bias
• It is implicitly incorporated in representation of knowledge (hypothesis)
• In other words: restriction of searching space
• Alias: restriction bias

 Occam’s Razor: pros
 Shorter hypothesis are fewer than longer hypothesis

• E.g., bit sequences of length n are half of those of length n+1 where n  0.
• If a short hypothesis fits the data well, it may not be accidental.

• Short hypothesis are scarce, phenomena explainable by them are scarce
• If a long hypothesis fits the data well, it may possibly be accidental (Ex.: DT with 200 nodes for 

|D| = 100)
• If long enough, one of the hypothesis fits to data surely, but which one fits is probabilistic and rare.

 Obtained and discarded
• Other things being equal, complex model cannot generalize as well as simple one.
• Assuming that later more flexibility to data will not required 77

Occam’s razor: two problems

 Occam’s Razor: cons
 Usually size(h) depends on H . For the same h, size(h) differs when H differs. Reaonable?
 Is “fewer” a justification for the preference to smaller?

 Is Occam’s Razor Well-Defined?
 (Internal) knowledge representation defines which h is short --- arbitrary

 A test “(Sunny  Normal-Humidity)  Overcast  (Rain  Light-Wind)” is length 1 or not?

 One answer: fix a language; At long enough side, long hypothesis is long.
 Rebuttal： we are discussing “short” hypothesis, not “long” ones

 Why not small hypothesis space but short hypothesis?
 Because if H is small, we still argue in the same way as H is “large.”
 Note first that we are thinking about infinite space. 

 If H is finite and practically small, its usefulness is very limited. If it is finite, we suppose it is huge.

 Note also that any hypothesis is finite length and the hypotheses with the same size(h) is 
finite.
 If we enumerate “small” set and “large” set in ascending order of length in parallel, we could see intuitively, that the 

hypothesis are not so much different. 
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Principle of plenitude

 Epicurus and others
 If more than one theory is consistent with the 

observations, keep all theories. [M. Hutter, Universal 
Artificial Intelligence, 2005」

 One reason: there is no specific reason we choose 
one from the others

 (your personal exercise) Compare it with Bayesian 
approach
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