Decision tree

- Structure and construction

Decision Tree
 $+$

Akito Sakurai

akito Sakurai

- Through the decision tree, the followings will be explained:
- Over-training/learning
- Bias vs. variance
- Occam's razor etc.

Materials for decision tree

Methods to learn

- Hypothesis set
- A set of candidate answers (=hypothesis) of ML
- E.g., a decision tree $=$ a hypothesis
- All possible decision trees $=$ a hypothesis set
- Hypothesis space (set)
- Measure between desired output and prediction
- Error, error rate, cost, etc.
- New (unseen) samples/data
- Used for evaluation of learned models.
- Different but sampled likewise
- sample: a vector of attribute (or feature) values + label
- Internal Nodes: a test of attribute values

- others: inequality
- Branches: True/False, values, value range, etc.
- e.g., "Wind = Strong", "Wind = Light")
- Leaves: class labels, i.e. classification result

PlayTennis (decision tree corresponding to the above table)
 comprehensibility

Decision tree is a Boolean function

Decision tree is a Boolean function

- expressiveness: Any Boolean function (literal is a test on an attribute) can be expressed
- Why?

Decision tree is directly interpreted as a Disjunctive Normal Form (DNF)
The following one: (Sunny ^ Normal-Humidity) \vee Overcast $\vee($ Rain \wedge Light-Wind $)$

Decision boundary 1

- Instances are in general expressed with discrete features.
- Continuous values features are treated as range
- Typical value types
. nominal (\{red, yellow, green\})
- quantized (\{low, medium, high\})
- Continuous values
- Discretization and/or vector quantization: divide by thresholds
ex. U. M. Fayyad and K. B. Irani, Multi-Interval Discretization of Continuous Valued Attributes for Classification Learning, Proc. 13th IJCAI (1993).

Decision boundaries 2

- Continuous values can be used directly
In the case, a branch designates a value range.
- At each node, the samples are tested with an attribute against a threshold.

The thresholds are determined in learning phase.

- Decision boundaries are, therefore, piecewise linear (hyper plane)
- Sample space is divided by hyperplanes perpendicular to axes.

Learning process is hypothesis output process

- In general, learning process is a process to output hypotheses. They may be output
- Just once,
- Predefined times, or
- Infinitely many times.
- When hypothesis space is finite (\# of hypotheses in the space is finite)
- Try out all the hypotheses, and output the best one, or
- Try out a part of it, and output the best one.
- In general, although finite, exhaustive search is impossible
- When the hypothesis space is infinite
- Try just a part of it, and
- Continously output tried hypothesis with the evaluation result infinitely
- In either case, the order of search is critically important

For decision trees

- Hypothesis space is finite
- Discrete attributes only: one attribute could appear only once on a path from root to a leaf.
- When continuous attributes exist: if we count trees once which give the same prediction to the same sample, the trees are finite.
- But exhaustive check is infeasible
- Too many
- How to treat?

Selection order of hypothesis

- Output infinitely many times
- Seemingly, only one hypothesis is output, because
- When a terminal condition is satisfied, halts and outputs
- Why infinitely many times?
- The optimum is a limit of infinite repetitions.
- Search order is critical
- The later the better is what we require
- If so, we can stop the sequence at any time
- In reality, we cannot do it
- Bias
- Any order we take, our best hypothesis has certain bias, which is called, training/learning bias

DT-learning: top-down induction (ID3)

- Algorithm Build-DT (Examples, Attributes)
- Recursively applied to partial trees
- Examples: a subset of training set, Attributes: a subset of all the attributes

IF the labels of Examples are the same, THEN RETURN (the leaf with the label) ELSE

IF Attributes is empty THEN RETURN (the leaf with the majority labe) ELSE
select a best attribute A as a root. Build trees as follows and connect them. FOR each value v of A

Build branches corresponding to conditions $A=v$
IF $\{x \in$ Examples $\mid x \cdot A=v\}=\varnothing$
THEN build a leaf with majority label
ELSE Build-DT $(\{x \in$ Examples $\mid x . A=v\}$, Attributes $-\{\mathrm{A}\})$

- Which attribute is best?
- For example, which one is better?

What is the best attribute?

- As a result of selecting the attribute, the smaller the built tree is, the better
- A smaller tree is better. Why?
- A detailed explanation will be given later. Here, a tree is smaller \rightarrow paths to leaves are shorter \rightarrow a fewer attributes are used for decision \rightarrow closer to reality
- In case of binary classification
- Comparing [10+,10-] to [0+,20-], which will result in smaller tree?

| Best attribute?
- Various functions
- Suppose the x-axis represents ratio of "+" class. The peak should come at 0.5 . Axial symmetric with 0.5 .

- Entropy (average information content) function is the typical one $H(D) \equiv-p_{+} \log _{b}\left(p_{+}\right)-p_{-} \log _{b}\left(p_{-}\right)$

Entropy before the selection $\quad-\frac{29}{64} \log \frac{29}{64}-\frac{35}{64} \log \frac{35}{64} \approx 0.9936507$

Entropy after the selection of attribute

Entropy: intuitive explanations

- A measure for uncertainty/ambiguity; higher for higher uncertainty
- Target of measure
purity: how the sample set is close to status being of just one label
impurity (disorder): how the set is close to status where the labels are not predictable
- measure: entropy
- Positively correlate with: impurity, uncertainty, irregularity, unpredictability
- Negatively correlate with: purity, certainty, regularity, predactibility
- Example
- For simplicity, suppose that $\mathrm{H}=\{0,1\}$, and distributed according to a distribution $\operatorname{Pr}(y)$ Same as the case with (more than two) discrete labels
. Even continuous probability distribution: differential entropy (integration for sum)
- The most pure cases about y are one of the two:

$$
\begin{aligned}
& P r(y=0)=1, P r(y=1)=0 \\
- & P r(y=1)=1, P r(y=0)=0
\end{aligned}
$$

- The distribution with the least purity
- $\operatorname{Pr}(y=0)=0.5, \operatorname{Pr}(y=1)=0.5$
. The most: inpurity/uncertainty/irregularity/unpredictability
- Entropy function: concave ("upward convex")

Entropy: information theoretic def.

- Elements considered
- D: a set of samples $\left\{\left\langle x_{1}, \mathcal{C}\left(x_{1}\right)\right\rangle,\left\langle x_{21} C\left(x_{2}\right)\right\rangle, \ldots,\left\langle x_{m}, d\left(x_{m}\right)\right\rangle\right\}$
- $p_{+}=\operatorname{Pr}(c(x)=+), p_{-}=\operatorname{Pr}(c(x)=-)$
- Definition
- H is defined on a probability distribution p
- For samples in D, frequency of labels + and - be expressed by p_{+}and p_{-}respectively
- The entropy of D is.

$$
H(D) \equiv-p_{+} \log _{b}\left(p_{+}\right)-p_{-} \log _{b}\left(p_{-}\right)
$$

- Unit?
- Depends on the basis of \log (bits for $b=2$, nats for $b=e$.)
- 1 bit is necessary to encode a sample in its worst case ($p_{+}=0.5$)
- If uncertainty is small (e.g., $p_{+}=0.8$), less than 1 bit is necessary
- Partition according to attribute values
- remember: partition of D is, a set of mutually exclusive subsets whose union is D
- target: reduction of uncertainty/impurity by partition with values of attribute A
- Definition
- Information gain by attribute A is expected reduction of entropy by partition based on A $\boldsymbol{G a i n}(\boldsymbol{D}, \boldsymbol{A}) \equiv \boldsymbol{H}(\boldsymbol{D})-\sum_{v \in \text { values }(A)}\left[\frac{\left|\boldsymbol{D}_{v}\right|}{|\boldsymbol{D}|} \cdot \boldsymbol{H}\left(\boldsymbol{D}_{v}\right)\right]=\frac{1}{|\boldsymbol{D}|}\left(|\boldsymbol{D}| \cdot \boldsymbol{H}(\boldsymbol{D})-\sum_{\text {vevalues }(A)} \mid \cdot \boldsymbol{H}\left(\boldsymbol{D}_{v}\right)\right)$
where D_{v} is $\{x \in D \mid x . A=v\}$, i.e., a set of samples in D whose value for attribute A is v
- Note: entropy values are adjusted according to the size of subset D_{V} of A
- Because entropy value is a value per one element of the set.
- Which attribute is better?

Example

- Training sample set for a concept PlayTennis

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

- ID3 \equiv Build- $D T$ where information gain function $\operatorname{Gain}(\cdot)$ is used
- Let us see how ID3 works
- Select an attribute for the root node

Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
1	Sunny	Hot	High	Light	
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Light	Yes
4	Rain	Mild	High	Light	Yes
5	Rain	Cool	Normal	Light	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Light	No
9	Sunny	Cool	Normal	Light	Yes
10	Rain	Mild	Normal	Light	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Light	Yes
14	Rain	Mild	High	Strong	No

- Prior (unconditioned) distribution: 9+, 5-

$\left[\begin{array}{c}{[6+, 2-]} \\ {[3+, 3-]} \\ \hline\end{array}\right.$
$H(D)=-(9 / 14) \log (9 / 14)-(5 / 14) \log (5 / 14)$ bits $=0.94$ bits
- H(D, Humidity = High $=-(3 / 7) \log (3 / 7)-(4 / 7) \log (4 / 7)=0.985$ bits
- $H\left(D_{1}\right.$ Humidity $=$ Normal $)=-(6 / 7) \log (6 / 7)-(1 / 7) \log (1 / 7)=0.592$ bits
- Gain $(D$, Humidity $)=0.94-((7 / 14) * 0.985+(7 / 14) * 0.592)=0.151$ bits
- similarly, Gain $(D$, Wind $)=0.94-((8 / 14) * 0.811+(6 / 14) * 1.0)=0.048$ bits

$$
\operatorname{Gain}(D, A) \equiv H(D)-\sum_{v \in \operatorname{values}(A)}\left[\frac{\left|D_{v}\right|}{|D|} \bullet H\left(D_{v}\right)\right]
$$

Building decision tree for PlayTennis by using ID3 (2)

- Select an attribute for the root node

- Gain(D_{1} Humidity $)=0.151$ bits
- $\operatorname{Gain}(D, W i n d)=0.048$ bits
- $\operatorname{Gain}\left(D_{1}\right.$ Temperature $)=0.029$ bits
- Gain(D, Outlook) $=\underline{0.246 \text { bits }}$

- Select the next attribute (root of subtree (child tree)) ${ }_{[2+, 3-]}^{[4+, 0-1]}$
- Continue until all the attributes are used (on a path to the leaf) or purity $=100 \%$
- purity $=100 \%$ means just one label for the training samples for the leaf
- By the way, could $\operatorname{Gain}(D, A)<0$ happen?

DT-learning: recursive application

Building decision tree for PlayTennis by using ID3 (3)

- Select an attribute for the root node (for subtree)

- convention: $0 \log (0 / a)=0$
- $\operatorname{Gain}\left(D_{\text {Sunny }}\right.$ Humidity $)=0.97-(3 / 5) * 0-(2 / 5) * 0=\underline{0.97 \text { bits }}$
- $\operatorname{Gain}\left(D_{\text {Sunnu }}\right.$ Wind $)=0.97-(2 / 5) * 1-(3 / 5) * 0.92=0.02$ bits
- $\operatorname{Gain}\left(D_{\text {Sunny }}\right.$ Temperature $)=0.57$ bits
- Top-down and recursive application
- If there are n discrete attributes only, $\mathrm{O}(n)$ partitions are enough for a path
- At each level of a tree, there exits at most one scan through a whole data

For broader fields

- Assumptions in the algorithm ID3 and its avoidance
- Discrete output \rightarrow continuous output

Continuous values can be output
E.g. Regression trees [Breiman et al, 1984]

- Discrete input \rightarrow continuous input
- Quantization methods
- Inequality instead of equality
- Scale-up
- Knowledge discovery and/or data mining in very large DB (VLDB)
- Positive: there are good algorithm to process many samples
- Negative: too many attributes is a headaches
- Desired tolerance
- Tolerance to noisy data (classification noise \equiv incorrect labels; attribute noise \equiv inaccurate/low frequent data).
- Tolerance to missing data

Building decision tree for PlayTennis by using ID3 (4)

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

26

Decision tree in R

- As R language packages, we have tree, rpart, and mvpart which is an extension of rpart to multivariate regression trees

Examples: tree
data(iris)

plot(iris.tr,type="u"); text(iris.tr) $\begin{aligned} & \text { plot(iris.tri,type="u"); text(iris.tri) }\end{aligned}$

1) root 150329 . क̂oo setosa (0.33333 б. 33333 о. 33333)

2) Petal. Wdth >1.7546 9. 635 Virginica (o. oocooo o. 021740.97826)

> iibrary(tree)
$>$ data(cars)
> cars.tr<-treel
node), split, n, devi ance, yval

* denotes terminal node

1) root 50 32540. 042.98
2) speed < 17.5 31 8307.0 29. 32
3) speed <12.5 15 1176. o 18. 20 8) speed <9.5 $6 \quad 277.3$ 10. 67 * 9) speed $>9.59 \quad 331.623 .22$ *
4) speed $>12.516 \quad 3535.0$ 39. 75
5) speed $>17.519 \quad 9016$. o 65. 26 6) speed $<23.514 \quad$ 2847. 0 55. $71 * *$
6) speed $>23.55 \quad 1318.0$ 92. 00 * 7) speed >23.55 1318.0 92. oo *
\rightarrow text(cars.tr)
$>$ text(cars.tr
\rightarrow prot(cars.tr, type="u")
\rightarrow text(cars.tr)

Examples: tree

el <c("S", "C", "V")[iris[, 5] plot(iris[, 3],iris[, 4],type="n") ext (iris[, 3],iris[, 4],labelssiris.label) partition.tree(iris.tr1, add=T, col $=2$, cex=1. 5)

"ris. col or<ec("red","bl ue","green")[iris[,5] plot(iris[, 3],iris[, 4], col =iris.col or) partition.tree(iris.trl, add=T, col $=2$, cex $=1$. 5)

Evaluation of hyotheses

(cars.trl<-prune. tree(cars.tr, best $=4$))
pl ot (cars.tri); text(cars.tri, all =T)
(plot (cars\$speed, cars\$di st)
partition.tree(cars.tri, add=T, col $=2$)

Basic concepts before Precision/Recall

TP, TN, FP, FN

Confusion matrix

Precision／Recall Tradeoff and F－measure

Recall $=\frac{T P}{T P+F N} \quad$ Accuracy $=\frac{T P+T N}{T P+F P+T N+F N}$

$F=\frac{1}{\frac{1}{2}\left(\frac{1}{\text { precision }}+\frac{1}{\text { recall }}\right)}$

Confusion matrix

ROC curve

－Receiver operating characteristics
－The ROC curve was first developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields and was soon introduced to psychology to account for perceptual detection of stimuli．
－https：／／en．wikipedia．org／wiki／Receiver＿operating＿characteristic

Radar ROC

ROC curve

Training vs. generalization error

- Training error: The training error is the mean of errors over the training sample D
$=\left\langle\left\langle x_{1}, f\left(x_{1}\right)\right\rangle, \ldots,\left\langle x_{n}, f\left(x_{n}\right)\right\rangle\right\rangle$.
- E.g., $e r r_{D}(h)=(1 / n) \sum_{i=1}^{n}\left(h\left(x_{i}\right)-f\left(x_{i}\right)\right)^{2}$
- Easy to calculate
- Generalization error: Expected prediction error over an independent test sample x :
- E.g., $E r r_{D}(h)=E_{D}\left[(h(x)-f(x))^{2}\right]$

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error err, while the light red curves show the conditional test error $\operatorname{Err}_{\mathcal{T}}$ for 100 training sets of size 0 each, as the model complexily is increased. The solid curves s

Over－learning／training／fitting

－To learn what should not be learnt
－What should not be learnt
－Bias existing in the training data
－Because training data is a finite subset of infinite set （population），the training data has certain bias which is not in the population．
－Error existing in training data
－In reality，any training set contains errors in labels
－ML tends to learn as much as it can
－Because it has very high learning capability
－E．g．，it has a large number of adjustable parameters

Illustrative example

多分過学習？
多分過学習

Overtraining in DT：an example

－Example：induced tree

－Suppose that a noisy example exists in the training set
－sample 15：＜Sunny，Hot，Normal，Strong，－＞
This is noisy．The correct label is + ．
The tree built without it misclassifies this＂new＂and＂noisy＂sample．
－How should the tree be updated（how should incremental learning be implemented）？
－A new hypothesis $h^{\prime}=T$ may deteriorate the performance than $h=T$ ？

Overlearning in induction

－Definition
－A hypothsis h over－learns a training set D（overfits to D ）iff there exists another hypothesis h＇

－Possible cause：the training set is too small（decision relying on too scarce information）；noisy data；simply accidental
－How to avoid？
－prevention
－Avoid overlearning before it occurs
－Select only important and／or relevant attributes（i．e．，useful for a model）
Caution: a chicken-and-egg problem; need a measure to predict relevance
－circumvention
When it seems to happen，just go around it
Prepare a test set，when a new h behaves worse，stop to learn
－recovery
Wait until it happens，detect it，and recover from it
Build a model，and discover and delete elements that cause over－learning（prune）

DT learning：avoiding over－learning

－How to avoid？
－prevention
Select just relevant attributes（i．e．，relevant to the decision tree）
Prediction of relevance：try and error，add and delete
－avoidance

－How to select＂best＂model（decision tree）
－Method described above：validation set is mutually exclusive to the learning set
－Another method：Minimum Description Length（MDL）： minimize： $\operatorname{size}(h \equiv T)+\operatorname{size}$（misclassifications $(h \equiv T)$ ）

DT learning：avoiding over－learning

－Two basic approaches
－Pre－pruning（avoidance）：Stop growing the tree in the middle，i．e．，when there is not enough data to select reliably the next attribute．
－Post－pruning（recovery）：Prune an over－grown tree，i．e．，cut down branches whose evidence to exist is not enough
－Evaluation of subtrees to be pruned
－Cross－validation：divide data exclusively into training and validation dataset，and repeat
－Statistical test：test if the observed regularity is accidental or not
－Minimum Description Length（MDL）
．Increase of the complexity of a hypothesis T is larger／smaller than the complexity to describe exceptions of the data to be explained？
Tradeoff：increase of the description of the larger model versus that of increased residuals

Reduced－Error Pruning

－Post－Pruning，Cross－Validation Approach
－Divide the data given into training set and validation set
－Function Prune（ T ，node）
－Subtree rooted with node is pruned
－Build a leaf with node．（its label is the majority label）
－Algorithm Reduced－Error－Pruning（D）

－Diveide D into $D_{\text {train }}$（training／＂growing＂），$D_{\text {validation }}$（ validation／＂pruning＂）
－Apply ID3 to $D_{\text {train }}$ to build a complete tree T
－UNTIL accuracy measured with $D_{\text {validation }}$ decreases DO FOR an internal node candidate in T

Temp［candidate］\leftarrow Prune（ T ，candidate）
Accuracy［candidate］\leftarrow Test（Temp［candidate］，$D_{\text {validation }}$
$T \leftarrow T \in T e m p$ 中で Accuracy が最良のもの
－RETURN（pruned）T

Effects of Reduced-Error Pruning

Rule Post-Pruning

- Decrease of test errors by Reduced-Error Pruning

- Pruning of nodes decrease the test error
- Note: $D_{\text {validation }}$ is different from $D_{\text {train }}$ and $D_{\text {test }}$
- Pros and cons
- Pros: The smallest among the most accurate T (a subtree of T) is obtainable
- Cons: smaller dataset is used to build T, in case the data is scarce

Could we afford $D_{\text {validation }}$?
If allowable data is not enough ($D_{\text {train }}$ is not large enough), the pruning make error larger

- Convert a tree to a rule set

- Syntax of the rule set
- Left-hand side: conditions (equality tests on attributes form conjunctive formula)
- Right-hand side: class labels

- Example
- IF $($ Outlook $=$ Sunny $) \wedge($ Humidity $=$ High $)$ THEN PlayTennis $=$ No
- IF $($ Outlook $=$ Sunny $) \wedge($ Humidity $=$ Norma) THEN PlayTennis $=$ Yes
-
- Often used
- Well-known countermeasure for overfitting
- C4.5 uses a derived version. C4.5 is a successor of ID3.
- Algorithm Rule-Post-Pruning (D)
- Build T from D (by ID3) - to adapt to D as close as possible (over-learning is allowed)
- Convert T to an equivalent rule set (a rule is for a path from the root to a leaf)
- Delete, independently, tests (conditions) as many as possible while estimated accuracy increases
- Sort the pruned rules

Sort them according to estimated accuracy
In rows, apply them to $D_{\text {test }}$

Replications in decision tree

- In decision tree: a shortcoming in representation
- Decision tree is not the simplest representation method
- point: replication of attributes is necessary
- Example of attribute replication
- e.g., Disjunctive Normal Form (DNF): $(a \wedge b) \vee(c \wedge \neg d \wedge e)$
- (one of) conjunctions should be replicated as subtrees
- Partial solutions
- Form a a new attribute
- Alias: constructive induction (CI)
- Ref. Chap. 10, T. Mitchell

Decision tree: other topics

- Synthesize a new attribute
- Synthesize a new attribute from the conjunction of the two attributes just before a "+ leaf"
- Also called feature construction
- Example
- $(a \wedge b) \vee(c \wedge \neg d \wedge e)$
- $\mathrm{A}=\neg d \wedge e$
- $B=a \wedge b$
- When repeated
- $C=A \wedge C$
- Correctness?
- Time complexity?

Continuous attributes

- Two methods to deal with continuous attributes
- Discretization
- Divide attribute values into ranges
e.g., $\left\{\right.$ high \equiv Temp $>35^{\circ} \mathrm{C}$, med $\equiv 10^{\circ} \mathrm{C}<\operatorname{Temp} \leq 35^{\circ} \mathrm{C}$, low $\left.\equiv \operatorname{Temp} \leq 10^{\circ} \mathrm{C}\right\}$
- On internal nodes, the thresholds are used for attribute tests
- e.g., $A \leq a$ makes two subsets $A \leq a$ and $A>a$
- Information gain is calculated, too.
- How to find the partition that maximizes information gain
- FOR each continuous attribute A

Split samples $\{x \in D\}$ according to values x. A
FOR each ordered pair (l, L) of values of A, which has different labels
evaluate information gain of partition by mid-point, i.e., $D_{A \leq(1+\omega) / 2 t} D_{A>(1+\omega) / 2}$

- Example

. $A \equiv$ Length:	10	15	21	28	32	40	50
Class:	-	+	+	-	+	+	-

[^0]- Topics which common to other machine leaning methods

Issues on multiple-valued attributes

- 問題
- An attribute with multiple values is tend to be preferred by Gain (\cdot)
- E.g., image date (2019/10/10 etc.) is used as an attribute
- One approach: GainRatio to replze Gain

$$
\begin{aligned}
\operatorname{Gain}(D, A) & \equiv H(D)-\sum_{v \in \operatorname{values}(A)}\left[\frac{\left|D_{v}\right|}{|D|} \cdot H\left(D_{v}\right)\right] \\
\operatorname{GainRatio}(D, A) & \equiv \frac{\operatorname{Gain}(D, A)}{\operatorname{SplitInformation}(D, A)} \\
\text { SplitInformation }(D, A) & \equiv-\sum_{v \in \text { values }(A)}\left[\frac{\left|D_{v}\right|}{|D|} \log \frac{\left|D_{v}\right|}{|D|}\right]
\end{aligned}
$$

- Almost proportional to SplitInformation: $c=|\operatorname{values}(A)|$
- i.e., handicapped to attribute with many values
- e.g., example: $c_{1}=c_{\text {Date }}=n$ and $c_{2}=2$

SplitInformation $\left(A_{1}\right)=\log (n)$, SplitInformation $\left(A_{2}\right)=1$
When $\operatorname{Gain}\left(D_{1} A_{1}\right)=\operatorname{Gain}\left(D, A_{2}\right)$, $\operatorname{GainRatio}\left(D, A_{1}\right) \ll \operatorname{GainRatio}\left(D, A_{2}\right)$

- i.e., GainRatio(\cdot) can be used to express selection bias (to a smaller splits)

Attributes with weights

- Another partition index
- n is the number of classes
- Gini(D) becomes smaller when the distribution in D become more biased, i.e., inpure.

$$
\begin{gathered}
\operatorname{Gini}(D)=\sum_{i \neq j} p_{i} p_{j}=1-\sum_{i=1}^{n} p_{i}^{2} \\
\operatorname{GiniGain}(D, A)=\operatorname{Gini}(D)-\sum_{v \in \operatorname{values}(A)}\left[\frac{\left|D_{v}\right|}{|D|} \cdot \operatorname{Gini}\left(D_{v}\right)\right]
\end{gathered}
$$

- Weights varies in applications
- Medical: Temperature costs 1000JPY; BloodTest 1500JPY; Biopsy 50000JPY Need to consider invasiveness
Risk to patient (e.g., Amniocentesis)
- Other cost

Sampling time: e.g., Robot sonar (range finder, etc.)
. Risk to artifacts, organisms (what kind of information is to be gathered)
Related fields (e.g., tomography): noninvasive test

- How to build a consistent tree with low expected cost
- One approach: replace gain with Cost-Normalized-Gain
- Example of cost-normalization
. [Nunez, 1988]:
Cost-Normalized-Gain $(D, A) \quad \operatorname{Gain}^{2}(D, A)$
[Tan and Schlimmer, 1990]:
$\operatorname{Cost}-$ Normalized $-\operatorname{Gain}(D, A) \equiv \frac{2^{\operatorname{Gain}(D, A)}-1}{(\operatorname{Cost}(D, A)+1)^{w}} \quad w \in[0,1]$
where w defines importance of cost

Missing value

- Problem: what if attribute A has no value?
- Often, during training or test, not all values are obtained
- Example: medical diagnosis
. \langle Fever $=$ true, Blood-Pressure $=$ normal, \ldots, Blood-Test $=$?, $\ldots .>$
- Value is missing or with low reliability
- Missing value: at training versus at test
training: calculate $\operatorname{Gain}(D, A)$ when for some $x \in D$, the value of A is not givem
. test: without knowing the value of A, classify a new sample
- Solution: including prediction to calculate $\operatorname{Gain}(D, A)$

Missing values: an example

- Predict most probable value of $x . A$
- Plan 1: Humidity = Normal
- Plan 2: Humidity = High (No examples are all High)
- (Which gives the largest Gain ? High: Gain = 0.97, Normal: Gain < 0.97)

- Weigh with probability
- 0.5 High, 0.5 Normal
- Gain < 0.97

- A test sample: <?, Hot, Normal, Strong>

Missing values: an example

- Predict most probable value of $X . A$
- Plan 1: Humidity = Normal
- Plan 2: Humidity = High (No examples are all High)
- (Which gives the largest Gain ? High: Gain = 0.97, Normal: Gain < 0.97)

- Weigh with probability
- 0.5 High, 0.5 Normal
- Gain < 0.97

1/3 Yes+1/3 Yes+1/3
$1 / 3$ Yes $+1 / 3 \quad$ No $=$ Yes

Induction

- According to OED (Oxford English Dictionary)
- the process of inferring a general law or printciple from the observations of particular instances
- The above one refers to inductive inference
- inductive reasoning is: the process of reassigning a probability (or credibility) to a law or proposition from the observation of particular events

Induction

- Induction is:

to obtain regularity implicit in data, e.g.,

- experimental observations of free falling objects \rightarrow Newton's law of universal gravitation (well, not really. The invention is combination and elaboration of Kepler's theory and others)
- Tycho Brahe's observations
\rightarrow Johannes Kepler's laws
- How should we measure the correctness of inductions?

Search in hypothesis space by ID3

- Searching Problem
- Target of the search is all the decision trees, which can represent any Boolean functions. Pros: expressiveness; flexibility
Cons: heavy computation; huge, include (many) incomprehensible trees
- Objective: to find the best one (minimal and consistent tree)
- Obstacle: to find out this tree is NP-hard
- Tradeoff
- Use of heuristics (a guide of search to tell us which is the first to see)
. Use of greedy algorithm
That is, hill-climbing (gradient "ascent" but discrete) without backtrack
- Statistical Learning
- Decisions are made based on statistics $p_{+1} p_{-}$of D_{v}
- In ID3, all the data is used
- Robust to noisy data if some measures (simple and easy to use are taken).

Inductive bias in ID3

Assumption in learning phase to suggest which hypothesis to be chosen, prioritized, or discarded. Without this, no meaningful result is obtained, because there are infinite hypotheses.

- \quad Suppose H is a power set of X
- \Rightarrow No inductive bias? There is! infinite hypotheses.
Preference to shorter trees (termination condition)
- Preference to put attributes with high information gain close to the root Gain(\cdot): a heuristics that represent the bias of $I D 3$
- Inductive bias of ID3 unreasonable to adopt an assumption
. Preference to some hypothesis are expressed by a heuristic function by data
- Another type: restrict hypothesis space H (e.g., normal form of propositional logic: k-CNF, etc.)
- Preference for shorter trees

If a bias is inevitable, which bias is better?

- Selection of shortest tree among the ones consistent with data
- Occam's razor bias: Entities should not be multiplied without necessity

Learning and bias

- Bias: some order among hypotheses
- Preference: plural of hypothesis at the same time
- Searching: when to evaluate one by one
- Hypotheses consistent with data are, in general, many. Hence we need a bias.
- Unless we use all the hypotheses, we need bias to select (and not to select) hypothesis

OK, but isn't it unreasonable to adopt an	
learning:	assumption that is not supported by data
Data \rightarrow hypothesis	

What Isaac Newton said

- How people generally say
- Entities should not be multiplied beyond necessity.
- By Bertrand Russell
- It is vain to do with more what can be done with fewer.
- Most common interpretation
- Among the theories that are consistent with the observed phenomena, one should select the simplest theory.
- We are to admit no more causes of natural things than such as are both true and sufficient to explain the appearances. To this purpose the philosophers say that Nature does nothing in vain, and more is in vain when less will serve; for Nature is pleased with simplicity, and affects not the pomp of superfluous causes.

Occam's razor: a preference bias

- TWo types of biases: preference biases and language biases
- preference bias
- It is implicitly incorporated in learning algorithms
. In other words: implying searching order
- language bias
- It is implicitly incorporated in representation of knowledge (hypothesis)

In other words: restriction of searching space
Alias: restriction bias

- Occam's Razor: pros
- Shorter hypothesis are fewer than longer hypothesis
E.g., bit sequences of length n are half of those of length $\mathrm{n}+1$ where $n \geq 0$.
- If a short hypothesis fits the data well, it may not be accidental.

Short hypothesis are scarce, phenomena explainable by them are scarce
If a long hypothesis fits the data well, it may possibly be accidental (Ex.: DT with 200 nodes for $|D|=100$)

If long enough, one of the hypothesis fits to data surely, but which one fits is probabilistic and rare.

- Obtained and discarded

Other things being equal, complex model cannot generalize as well as simple one.

- Assuming that later more flexibility to data will not required

Occam's razor: two problems

- Occam's Razor: cons
- Usually size (h) depends on H. For the same h, size (h) differs when H differs. Reaonable?
- Is "fewer" a justification for the preference to smaller?
- Is Occam's Razor Well-Defined?
- (Internal) knowledge representation defines which h is short --- arbitrary
- A test "(Sunny ^ Normal-Humidit) \vee Overcast \vee (Rain ^ Light-Wind)" is length 1 or not?
- One answer: fix a language; At long enough side, long hypothesis is long.
- Rebuttal: we are discussing "short" hypothesis, not "long" ones
- Why not small hypothesis space but short hypothesis?
- Because if H is small, we still argue in the same way as H is "large."
- Note first that we are thinking about infinite space.
- If H is finite and practically small, its usefulness is very limited. If it is finite, we suppose it is huge.
- Note also that any hypothesis is finite length and the hypotheses with the same $\operatorname{size}(h)$ is finite.

If we enumerate "small" set and "large" set in ascending order of length in parallel, we could see intuitively, that the hypothesis are not so much different.

Principle of plenitude

- Epicurus and others
- If more than one theory is consistent with the observations, keep all theories. [M. Hutter, Universal Artificial Intelligence, 2005」
- One reason: there is no specific reason we choose one from the others
- (your personal exercise) Compare it with Bayesian approach

[^0]: Threshold candidates: Length $\leq 12.5 ? \leq 24.5 ? \leq 30 ? \leq 45$?

