Contents

Bayesian Inference and naïve Bayes

Akito Sakurai

- Bayes theorem
- MAP and ML
- Bayes optimal classifier and Gibbs algorithm
- Prediction of class or probability?
- Naïve Bayes

Bayes Theorem

$$
\begin{aligned}
P(A, B) & =P(A \mid B) P(B) \\
& =P(B \mid A) P(A)
\end{aligned}
$$

Ex. (Mitchell Chap. 6.2)

Suppose we now observe a new patient for whom the lab test returns a positive result. Should we diagnose the patient as having cancer or not?
The test returns a correct positive result in only 98% of the cases in which the disease is actually present and a correct negative result in only 97% of the cases in which the disease is not present. Over the entire population of people only .008 have thís disease.

Ex. (Mitchell Exercise 6.1)

Suppose the doctor decides to order a second laboratory test for the same patient, and suppose the second test returns a positive result as well. What are the posterior probabilities of cancer and \neg cancer following these two tests? Assume that the two tests are independent.

$$
\begin{array}{llll}
\mathrm{P}(\text { cancer })= & .008 & \mathrm{P}(\neg \text { cancer })= & .992 \\
\mathrm{P}(+\mid \text { cancer })= & .98 & \mathrm{P}(-\mid \text { cancer })= & .02 \\
\mathrm{P}(+\mid \neg \text { cancer })=.03 & \mathrm{P}(-\mid \neg \text { cancer })=.97 \\
\mathrm{P}\left(+_{1}+{ }_{2}\right)=\mathrm{P}\left(++_{1}+{ }_{2} \mid \mathrm{c}^{\prime} r\right) \mathrm{P}\left(\mathrm{c}^{\prime} r \mathrm{r}\right)+\mathrm{P}\left(++_{1}++_{2} \mid \neg \mathrm{c}^{\prime} r\right) \mathrm{P}\left(\neg \mathrm{c}^{\prime} \mathrm{r}\right)=.00858 \\
\mathrm{P}\left(\text { cancer } \mid++_{1}+{ }_{2}\right)=\frac{P\left(+_{1}+{ }_{2} \mid \text { cancer }\right) P(\text { cancer })}{P\left(+_{1}+{ }_{2}\right)}=. \mathbf{8 9 6}
\end{array}
$$

Multiplication rule (conditional probability): (Product rule)

$$
\mathrm{P}(\mathrm{~A} \wedge \mathrm{~B})=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})
$$

Addition rule:
(Sum rule)

$$
\mathrm{P}(\mathrm{~A} \vee \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \wedge \mathrm{~B})
$$

Law of total probability:

$$
\mathrm{P}(\mathrm{~B})=\sum_{i=1}^{n} P\left(B, A_{i}\right)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

[^0]Note: Is it possible to think of the "probability that a hypothesis holds"

Hypotheses

Hypotheses

Contents

MAP

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

Finding the most probable hypothesis $h \in H$ given the observed training data D should be most interesting.
Maximum a posteriori hypothesis $h_{M A P}$:

$$
\begin{aligned}
h_{M A P} & =\underset{h \in H}{\arg \max } P(h \mid D) \\
& =\underset{h \in H}{\arg \max } \frac{P(D \mid h) P(h)}{P(D)} \\
& =\underset{h \in H}{\arg \max } P(D \mid h) P(h)
\end{aligned}
$$

ML

Suppose that $P\left(h_{i}\right)=P\left(h_{i}\right)$ for any i, j, we get Maximum Likelihood (ML) hypothesis

$$
h_{M L}=\underset{h \in H}{\operatorname{argmax}} P(D \mid h)
$$

Compare it with:

$$
h_{M A P}=\underset{h \in H}{\operatorname{argmax}} P(D \mid h) P(h)
$$

An interpretation of ML

- In the real world, the prior distribution is thought to be unknown, incomputable, or non-existent.
- E.g., does a prior distribution exist for words in documents? Doesn't it differ in age groups, social background, and others.
- If the existence of a prior distribution is questionable, likelihood-maximization is a reasonable choice.

Most probable classification

- So far, we have obtained the most probable hypothesis given $D\left(h_{\text {MAP }}\right)$.
- How about most probable class of a sample?
- $h_{M A P}(x)$ does not predict the most probable class.
- What is the most probable classification of x ?
- 3 hypotheses: $P\left(h_{1} \mid D\right)=0.4, P\left(h_{2} \mid D\right)=0.3, P\left(h_{3} \mid D\right)=0.3$
- Predictions for a sample: $h_{1}(x)=+, h_{2}(x)=-, h_{3}(x)=-$

Ex. (Mitchell Chap. 6.7)

Contents

$\mathrm{P}\left(\mathrm{h}_{1} \mid \mathrm{D}\right)=.4 \quad \mathrm{P}\left(-\mid \mathrm{h}_{1}\right)=0 \quad \mathrm{P}\left(+\mid \mathrm{h}_{1}\right)=1$
$\mathrm{P}\left(\mathrm{h}_{2} \mid \mathrm{D}\right)=.3 \quad \mathrm{P}\left(-\mid \mathrm{h}_{2}\right)=1 \quad \mathrm{P}\left(+\mid \mathrm{h}_{2}\right)=0$
$\mathrm{P}\left(\mathrm{h}_{3} \mid \mathrm{D}\right)=.3 \quad \mathrm{P}\left(-\mid \mathrm{h}_{3}\right)=1 \quad \mathrm{P}\left(+\mid \mathrm{h}_{3}\right)=0$
Therefore:

$$
\sum_{h_{i} \in H} P\left(+\mid h_{i}\right) P\left(h_{i} \mid D\right)=.4
$$

$$
\sum_{h_{i} \in H} P\left(-\mid h_{i}\right) P\left(h_{i} \mid D\right)=.6
$$

And:

$$
\underset{c_{j} \in\{+,-\}}{\arg \max } \sum_{h_{i} \in H} P\left(c_{j} \mid h_{i}\right) P\left(h_{i} \mid D\right)=-
$$

Bayes optimal classification

$\underset{c_{j} \in\{+,-\}}{\arg \max } \sum_{h_{i} \in H} P\left(c_{j} \mid h_{i}\right) P\left(h_{i} \mid D\right)$

Note: Bayes optimal classifier must not be in H .
Note: Many papers report that it works well; but when we tried we often found no improvement in accuracy compared to MAP or ML. Why does this happen?
Note: Feasible? Doesn't it take time for computation?

- Bayes theorem
- MAP and ML
- Bayes optimal classifier and Gibbs algorithm
- Prediction of class or probability?
- Naïve Bayes

Bayes optimal classifier

- Suppose that $D=\left\{x_{1}, \ldots, x_{n}\right\}$ is observed from a distribution $P(X ; \theta)$ with the parameter θ. We want to estimate y for an unseen x given D .
- Method 1: Estimate θ and then predict by $\mathrm{P}(\mathrm{X} ; \theta)$
- MLE (max. likelihood) $\quad \theta_{M L E}=\operatorname{argmax} P(D \mid \theta)$
- MAP (max. a posteriori) $\quad \theta_{M A P}=\operatorname{argmax} P(D \mid \theta) P(\theta)$
- Expectation (posterior mean)

$$
\hat{\theta}=\int \theta P(\theta \mid D) d \theta=\int \theta P(D \mid \theta) P(\theta) / P(D) d \theta
$$

- Method 2: without estimating the parameter θ.

```
\(P(Y, \theta \mid D)=P(Y, D \mid \theta) P(\theta) / P(D)\)
```

$\Longrightarrow P(Y \mid D)=\int P(Y, D \mid \theta) P(\theta) / P(D) d \theta$

Basic ideas of Bayesian inference

- Bayesian view is that we can measure uncertainty, even if there are not a lot of examples
- What is the probability that a debut team will win the championship league this year?
- Cannot do this with a frequentist approach
- What is the probability that a newly minted particular coin will come up as heads?
- Without much data we utilize our initial belief as the prior
- But as more data comes available we transfer more of our belief to the data (likelihood)
- With all the data, we do not consider the prior at all
- Belief is coded as a probability distribution

An example: basic ideas

Assume that we want to infer the mean μ of a random variable x where the variance σ^{2} is known and we have not yet seen any data

- $P\left(\mu \mid D, \sigma^{2}\right)=P\left(D \mid \mu, \sigma^{2}\right) P(\mu) / P(D) \propto P\left(D \mid \mu, \sigma^{2}\right) P(\mu)$
- A Bayesian would want to represent the prior μ_{0} and the likelihood μ as parameterized distributions (e.g. Gaussian, multinomial, uniform, etc.)
- Let's assume a Gaussian just here
- Since the prior is a Gaussian we would like to multiply it by whatever the distribution of the likelihood is in order to get a posterior which is also a parameterized distribution specifically Gaussian

Conjugate Priors

- $P\left(\mu \mid D, \sigma_{0}^{2}\right)=P(D \mid \mu) P(\mu) / P(D) \propto P(D \mid \mu) P(\mu)$
- If the posterior is the same distribution as the prior after the multiplication, then we say the prior and posterior are conjugate distributions and the prior is a conjugate prior for the likelihood
- In the case of a known variance and a Gaussian prior we can use a Gaussian likelihood and the product (posterior) will also be a Gaussian
- If the likelihood is multinomial then we would need to use a Dirchlet prior and the posterior would be a Dirchlet

20

An illustrative example of Bayes inference

Prior dist.: $\quad P(\mu)=N\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right)$

- Posterior dis.: $P(\mu \mid D)=N\left(\mu \mid \mu_{N} \sigma_{N}^{2}\right)$

$$
\begin{aligned}
\mu_{N} & =\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{M L} \\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}} \\
\mu_{M L} & =\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \sigma^{2}=\frac{1}{N-1} \sum_{n=1}^{N}\left(x_{n}-\mu_{M L}\right)^{2}
\end{aligned}
$$

- What we believe moves from the prior distribution to data

An illustrative example of Bayes

 inferenceAn illustration of Bayesian Inference for the location parameter μ of a Gaussian distribution assuming the variance is given. The curves show the prior distribution of μ (the curve labelled $N=0$) (this, too, is a Gaussian), along with the posterior distribution when increasing N. The data points are generated from a Gaussian of location and variance parameters 0.8 and 0.1 respectively,
 and the prior is set to have location parameter 0 . Also in the prior distribution and the likelihood function, the true variance is known.

An example of Bayes inference

- $P\left(\mu, \sigma^{2} \mid D\right)=P\left(D \mid \mu, \sigma^{2}\right) P\left(\mu, \sigma^{2}\right) / P(D)$

$$
\propto P\left(D \mid \mu, \sigma^{2}\right) P\left(\mu \mid \sigma^{2}\right) P\left(\sigma^{2}\right)
$$

- prior: $P\left(\mu \mid \sigma^{2}\right)=M\left(\mu \mid \mu_{0}, \sigma^{2} / k_{0}\right)$,

$$
P\left(\sigma^{2}\right)=\mathrm{IG}\left(\sigma^{2} \mid r_{0} / 2, s_{0} / 2\right)
$$

$$
N _I G\left(\mu, \sigma^{2} \mid \mu_{0}, k_{0}, r_{0}, s_{0}\right)
$$

- posterior: $P\left(\mu \mid \sigma^{2}, D\right)=M\left(\mu \mid \mu_{N} \sigma^{2} / k_{N}\right)$,

$$
P\left(\sigma^{2}\right)=\mathrm{IG}\left(\sigma^{2} \mid r_{N} / 2, s_{N} / 2\right)
$$

$$
N _I G\left(\mu, \sigma^{2} \mid \mu_{N}, k_{N}, r_{N}, s_{N}\right)
$$

$\mu_{N}=\frac{k_{0}}{k_{0}+N} \mu_{0}+\frac{N}{k_{0}+N} \mu_{M L}$
$k_{N}=k_{0}+N$

Gibbs classifier

1. Select a hypothesis randomly according to P(h|D)
2. Classify a new example following the h

Good news: If a hypothesis is randomly sampled from $P(h)$,
$\mathrm{E}\left[\right.$ error $\left._{\text {Gibbs }}\right] \leq 2 \mathrm{E}\left[\right.$ error $\left._{\text {BayesOptimal }}\right]$
(See "Mitchell Machine Learning Chap. 6.8")
Effective when there are so many hypothesis that a Bayes optimal is hard to calculate and we repeat the inferences

Contents

- Bayes theorem
- MAP and ML
- Bayes optimal classifier and Gibbs algorithm
- Prediction of class or probability?
- Naïve Bayes

Two types of target values

Note

- For categorical values (assuming searching for continuous functions that assumes 0 on boundaries)
- Close to $0=$ close to boundaries $=$ not sure
- Suppose that confidence level is represented by a real value between 0 and 1 , it is, in the subarea of a category,
- in the middle $=$ confident $=$ close to 1 ,
- close to boundary $=$ not sure $=$ close to 0 ,
then the framework is of regression
- The values are ids of category

- If we use probability, not definite value, to represent the level of belongingness to a class, we could suppose that the frequency of samples reflects the probability
- Confidence level and the \# of samples
- Confidence level of being in a subarea for a point is considered to be proportional to the number of samples around the point.

In summary

Target value	Categorical value		Continuous value
Concept and method	Find boundary to minimize the \# of errors	Regression of target values (minimize	
Regression of Categorical id values	Rounded outputs are considered to be id	Fractional part of average errors) outputs is confidence	
	Estimate distributions considering inputs as samples from a population (density estimation)		

How to understand NN outputs

Learn to predict probability

Regression to learn reals

By the way, what is regression?

Statistical interpretation

$$
\begin{aligned}
h_{M L} & =\underset{h \in H}{\arg \max } \ln p(D \mid h) \\
& =\underset{h \in H}{\arg \max } \ln \prod_{i=1}^{m} e^{-\frac{1}{2}\left(\frac{d_{i}-h\left(x_{i}\right)}{\sigma}\right)^{2}} \\
& =\underset{h \in H}{\arg \max } \sum_{i=1}^{m}-\frac{1}{2}\left(\frac{d_{i}-h\left(x_{i}\right)}{\sigma}\right)^{2} \\
& =\underset{h \in H}{\arg \max } \sum_{i=1}^{m}-\left(d_{i}-h\left(x_{i}\right)\right)^{2} \\
& =\underset{h \in H}{\arg \min } \sum_{i=1}^{m}\left(d_{i}-h\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

Squared error is not appropriate to predict probability

- Ex. Learning survival rate from data
$h_{M L}=\underset{h \in H}{\arg \max } \ln p(D \mid h)$

$$
\begin{align*}
& =\underset{h \in H}{\arg \max } \ln p(D \mid n) \\
& =\underset{h \in H}{\arg \max } \ln \prod_{i=1}^{m} P\left(d_{i} \mid h, x_{i}\right) P\left(x_{i}\right) \quad \begin{array}{l}
d_{i} \text { is } 0 \text { or } 1 \text { (or } \\
\text { probability belonging } \\
\text { to a class) }
\end{array} \\
& =\underset{h \in H}{\arg \max } \sum_{i=1}^{m} \ln \left[P\left(d_{i} \mid h, x_{i}\right) P\left(x_{i}\right)\right] \\
& =\underset{h \in H}{\arg \max } \sum_{i=1}^{\arg } \ln \left(h\left(x_{i}\right)^{d_{i}}\left(1-h\left(x_{i}\right)\right)^{1-d_{i}} P\left(x_{i}\right)\right) \\
& =\underset{h \in H}{\arg \max } \sum_{i=1} d_{i} \ln h\left(x_{i}\right)+\left(1-d_{i}\right) \ln \left(1-h\left(x_{i}\right)\right)
\end{align*}
$$

目次

－Bayes 定理
－MAP とML

- Bayes 最適分類器，Gibbs アルゴリズム
- クラスの推定か確率の推定か
－Naïve Bayes
知的情報処理の復習

Naïve Bayes classifier

－Since（although？）simple，it is wellknown
－More accurate than expected，although simple
－Fast as is expected，since simple
－Bayes Theorem＋Assumption conditional independence
－The assumption hardly holds in the real world
－In the real world，though，it works well
－Successful applications：
－Text classification，
－Diagnosis，and many others
Naïve Bayes is not a Bayesian

Difficulty in Bayes classifier

－Recall that for a set of attributes $<a_{1}, \ldots, a_{n}>$ of x ，to infer the class that x belongs
$c_{M A P}=\underset{c_{j} \in C}{\arg \max } P\left(c_{j} \mid a_{1}, a_{2}, \ldots, a_{n}\right)$
$=\underset{c_{j} \in C}{\arg \max } \frac{P\left(a_{1}, a_{2}, \ldots, a_{n} \mid c_{j}\right) P\left(c_{j}\right)}{P\left(a_{1}, a_{2}, \ldots, a_{n}\right)}$
$=\underset{c_{j} \in C}{\arg \max } P\left(a_{1}, a_{2}, \ldots, a_{n} \mid c_{j}\right) P\left(c_{j}\right)$
－Difficulty：Huge dataset is required to infer $P\left(a_{1} \ldots a_{\mathrm{n}} \mid c_{j}\right)$ ，since there are huge number of parameters $\left(\Pi\left|A_{i}\right|\right)$（for two value attributes， 2^{n} parameters for n attributes）

Naïve Bayes classifier

－Naïve Bayes assumption：attributes are mutually independent when the class is given
－$P\left(a_{1}, \ldots, a_{n} \mid c_{j}\right)=P\left(a_{1} \mid c_{j}\right) P\left(a_{2} \mid c_{j}\right) \ldots P\left(a_{n} \mid c_{j}\right)$
－conditional independence（given the class）
－Reduces the number of parameters to infer：

$$
\Pi\left|\mathrm{A}_{\mathrm{i}}\right|\left(=\mathrm{O}\left(2^{\mathrm{n}}\right)\right) \rightarrow \Sigma\left|\mathrm{A}_{\mathrm{i}}\right|(=\mathrm{O}(\mathrm{n}))
$$

－Under this assumption，$c_{\text {MAP }}$ becomes

$$
c_{N B}=\underset{c_{j} \in C}{\arg \max } P\left(c_{j}\right) \prod_{i} P\left(a_{i} \mid c_{j}\right)
$$

Naïve Bayes：an Algorithm

Training（for a set of instances）
Estimate the probability that an instance x belongs to a class c_{j} $P^{\wedge}\left(c_{i}\right)=P\left(c_{i}\right)$＇s estimator
Estimate the probability that the i－th attribute value of an instance x belonging to the class c_{j} is a_{i} ． $P^{\wedge}\left(a_{i} \mid c_{j}\right)=P\left(a_{i} \mid c_{j}\right)$＇s estimator

Class（x）

$$
c_{N B}=\underset{c_{j} \in C}{\arg \max } \hat{P}\left(c_{j}\right) \prod_{i} \hat{P}\left(a_{i} \mid c_{j}\right)
$$

Naïve Bayes：Estimation

－How can we estimate $P\left(c_{j}\right)$ and $P\left(a_{i} \mid c_{j}\right)$ ？
－A standard method that statistics tells us
－Use frequency of the samples
－$P(c)$ is estimated by $\operatorname{count}(c) / N$
－$P(A \mid B)$ is estimated by $\operatorname{count}(A \wedge B) / \operatorname{count}(B)$
－Example： 100 samples． 70 ＋and 30 －
－ $\mathrm{P}(+)=0.7$ and $\mathrm{P}(-)=0.3$
－Among 70 positives，in $35 a_{1}=$ SUNNY
－ $\mathrm{P}\left(\mathrm{a}_{1}=\right.$ SUNNY $\left.\mid+\right)=0.5$

Example: Play Tennis

Outlook	Temp.	Humidity	Windy	Play	There are two classes: to play tennis (Play=Yes) and not to play tennis (Play=No)				
Sunny	Hot	High	No	No					
Sunny	Hot	High	Yes	No					
Overcast	Hot	High	No	Yes					
Rainy	Mild	High	No	Yes	Please infer if on the following day they played tennis or not				
Rainy	Cool	Normal	No	Yes					
Rainy	Cool	Normal	Yes	No					
Overcast	Cool	Normal	Yes	Yes					
Sunny	Mild	High	No	No	Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	Normal	No	Yes	Sunny	Cool	High	True	?
Rainy	Mild	Normal	No	Yes					
Sunny	Mild	Normal	Yes	Yes					
Overcast	Mild	High	Yes	Yes					
Overcast	Hot	Normal	No	Yes					
Rainy	Mild	High	Yes	No					
From Tom Mitchell's Machine Learning					49				

Naïve Bayes: Conditional independence

- Is it necessary?
- What happens if the assumption does not hold? - i.e. if $P\left(a_{1}, \ldots, a_{n} \mid c_{j}\right) \neq P\left(a_{1} \mid c_{j}\right) P\left(a_{2} \mid c_{j}\right) \ldots P\left(a_{n} \mid c_{j}\right)$
- If the following (weak) condition holds, the prediction is the same as Bayes classifier:

$$
\begin{aligned}
& \underset{c_{j} \in C}{\arg \max } P\left(a_{1} \mid c_{j}\right) P\left(a_{2} \mid c_{j}\right) \ldots P\left(a_{n} \mid c_{j}\right) P\left(c_{j}\right) \\
& =\arg \max P\left(a_{1}, a_{2}, \ldots, a_{n} \mid c_{j}\right) P\left(c_{j}\right)
\end{aligned}
$$

- But, the probability obtained in the prediction happens to be unrealistically close to 0 or 1

A solution

- For the PlayTennis, and a new instance <Outlook=sunny, Temp=cool, Humid=high, Windy=true>
- We want to calculate:

$$
c_{N B}=\underset{c_{j} \in C}{\arg \max } \hat{P}\left(c_{j}\right) \prod_{i} \hat{P}\left(a_{i} \mid c_{j}\right)
$$

- $\hat{P}(Y) \hat{P}($ sunny $\mid Y) \hat{P}($ cool $\mid Y) \hat{P}($ high $\mid Y) \hat{P}($ true $\mid Y)=0.0053$
$\hat{P}(N) \hat{P}($ sunny $\mid N) \hat{P}($ cool $\mid N) \hat{P}($ high $\mid N) \hat{P}($ true $\mid N)=0.0206$
$\Rightarrow C_{N B}=N O$

Naïve Bayes: a Problem

- What happens if an attribute value a_{i} is not observed for a class c_{j} ?
- Estimator of $P\left(a_{i} \mid c_{j}\right)=0$ because count $\left(a_{i} \wedge c_{j}\right)=0$
- Big impacts: if this is 0 , any products are 0 !
- A solution: use Laplace correction.
- $\hat{P}\left(a_{i} \mid c_{j}\right)=\frac{n_{c}+m p}{n+m}$
- n : \# of training samples for $c=c_{j}$
- n_{c} : \# of training samples for $c=c_{j}$ and $a=a_{j}$
- p : prior probability (estimator) $P^{\wedge}\left(a_{i} \mid c_{j}\right)$ (uniform distribution is common)
- m : pseudo-count (commonly the number of attribute values) $m=1$ is another choice which works better in many cases, too

Note: Laplace correction

- (in parameter estimations from frequency) supposing a prior distribution for the parameter, obtain a MAP estimator.
- Beta distribution is the prior: $f(x ; \alpha, \beta)=x^{\alpha-1}(1-x)^{\beta-1} / B(\alpha, \beta)$
- The posterior mean of the parameter is the Laplace correction. If the likelihood is a result of a Bernoulli trial: $\hat{\theta}=$ $\left(n_{0}+\alpha\right) /\left(\left(n_{0}+n_{1}\right)+\alpha+\beta\right)$

Note: smoothing

- In an estimation of statistical model, assigning a small probability to events that did not occur is called smoothing
http://www.jaist.ac.jp/project//LP_Portal/doc/glossary/index.html
- In natural language processing, frequencies of a word or a sequence of n words (n -gram) are often used. When n grows, n -gram becomes scarce, i.e., many n-grams do not occur. To solve the problem many techniques were invented.
- Laplace smoothing (additive smoothing)
- Linear interpolation
- Good-Turing smoothing
- Katz smoothing
- Church-Gale smoothing
- Witten-Bell smoothing
- Kneser-Ney smoothing
-
- Hierarchical Pitman-Yor language model

Text classification

－Texts classification：
－Classifying documents（mail，news，web pages，etc．or a paragraph，a sentence，etc．）
－Classifying e－mails into spam or not．
－Classifying blogs into splog or not
－Classifying news into interesting or not（to a person）
－Classifying reviews of a product into groups of good reputation or not
－Classifying reviews into trustable or not
－Classifying open ended questions for questionnaire surveys
－Classifying Q and A ＇s at a call－center．
Naïve Bayes works well
－How to apply Naive Bayes？
－Point：How to represent a sample（i．e．document），attributes？

\square Document representation

Bag－of－words
－Document as a vector of frequency of words in it
－＂Bag＂implies discarding positions where the word occurs，and
－disregarding the sequences（contexts）of a word
－i．e．if keio，gijuku，and university are words，there would be no difference between keio gijuku university，keio university giju，and gijuku keio university
－＂what are words＂is important，which should not differ among documents．
．In English，＂dog＂and＂dogs＂should be treated as the same
－Ignore words not relevant to classification
－In Japanese，particles such as ha，ga，mo，ya，etc are the ones
－In English，prepositions
－The words that have syntactic function but have no meaning are called functional words．
－Ignore words that are close to noise
－Very low frequent words such as appearing just once．

Document classification by

Document representation（cntd．）

－Representation itself is like naïve Bayes
－Because representation is not inference，it is not naïve Bayes， but it really looks like naïve Bayes．
－Probability of the occurrence of a document is formulated in naïve Bayes fashion．
－Suppose that for each class of documents，the probability that a specific word occurs in a document is known as $P\left(w_{1} \mid c_{j}\right)$ ， $P\left(w_{2} \mid c_{j}\right), \ldots, P\left(w_{n} \mid c_{j}\right)$ ．If $w_{1}, w_{2}, \ldots, w_{n}$ are the words that occur in a document，then the probability that the document occurs is $P\left(\operatorname{doc} \mid c_{j}\right)=P\left(w_{1} \mid c_{j}\right)^{\mathrm{TF}(w 1)} P\left(w_{2} \mid c_{j}\right)^{\mathrm{TF}(w 2)} \ldots P\left(w_{n} \mid c_{j}\right)^{\mathrm{TF}(w n)}$ where $\mathrm{TF}(\mathrm{w})$ is the term frequency of a word w in a document doc

出現確率をこう書けば naïve Bayes といえよう

Naïve Bayes

－For a document doc，

$$
c_{N B}=\underset{c_{j} \in C}{\arg \max } P\left(c_{j}\right) \prod_{w_{k} \in V_{o c}} P\left(w_{k} \mid c_{j}\right)^{T F\left(w_{k}, d o c\right)}
$$

where $T F\left(w_{k}\right.$, doc $)=$ frequency of w_{k} in doc and Voc is a set of all the words that we consider
－To represent word frequencies in a document，we need Laplace correction． The following estimator is used；where $n_{j}=$ the number of words in a class $c_{j}, n_{k, j}$＝the number of occurrences of word w_{k} in class c_{j} ．

$$
P\left(w_{k} \mid c_{j}\right)=\frac{n_{k, j}+1}{n_{j}+|V o c|}
$$

Twenty News Groups（Joachims 1996）

－ 1000 training documents in each group
－Assign new documents to one of newsgroups

comp．graphics	misc．forsale
comp．os．ms－windows．misc	rec．autos
comp．sys．ibm．pc．hardware	rec．motorcycles
comp．sys．mac．hardware	rec．sport．baseball
comp．windows．x \＆rec．sport．hockey	rec．sport．hockey
alt．atheism	sci．space
soc．religion．christian	sci．crypt
talk．religion．misc	sci．electronics
talk．politics．mideast	sci．med
talk．politics．misc	
talk．politics．guns	
T．Joachims．A probabilistic analysis of the Rocchio algorithm with TFIDF for texx categorization．	
In Proceedings of the 14th International Conference on Machine Learning，Nashville，TN，1997，pp．143－－151．	

Twenty News Groups（Joachims 1996）

－Naive Bayes：89\％accuracy of classification
－Highly frequent 100 word（the and of ．．．）are deleted
－The words such as functional words，words relatively useless for classification are categorized as stop words and are deleted
－The words occurring less than 3 times are deleted
－The words remained：38，500

Note：the accuracy is overly high．．In every text in 20 Newsgroups has a＂subject＂field which is very helpful for classification．
Although the subject field is now deleted，in the previous works the field might be utilized．

20 Newsgroups in R

20 Newsgroups：データ

－Naïve Bayes package in R is not appropriate to large dataset．
－Because the data matrix with naïve implementation becomes huge（in the previous R program，the matrices $x y$ ，$x y$ ， tt ） （2000 rows for documents and 40，000 columns for words）
－But non－zero entries are small in number，sparse matrix representation is useful．
－You have to pay for computational overhead．
－Then let us write an efficient program by ourselves！？
－In the＂20 Newsgroups＂site：
－http：／／people．csail．mit．edu／jrennie／20Newsgroups／
－Redirected to http：／／qwone．com／～jason／20Newsgroups／
－There is a preprocessed version：
－20news－bydate－matlab．tgz
－We use train．data，train．label，test．data，and test．label
－A program is uploaded to the class web page．
－Only the confusion matrix is in the next slide．
－Accuracy is around 78．2\％．

Bayes inference and NB

－Overview of the learning algorithm：$\quad P(D)$
－ML：maximize $P(\mathrm{D} \mid \mathrm{h})$
－MAP：maximize $\mathrm{P}(\mathrm{h} \mid \mathrm{D}) \propto \mathrm{P}(\mathrm{D} \mid \mathrm{h}) \mathrm{P}(\mathrm{h})$
－Posterior mean：
－Bayes optimal classifier：$P(c \mid D)=\int P(c \mid h) P(h \mid D) d h$ －Hypotheses distribute！
－Regression under Gaussian noise：
\Leftrightarrow minimization of mean squared error
Learning of probability of binary events
\Leftrightarrow minimization of cross－entropy
－Naive Bayes：rough assumption but practical
－Ex．Document classification

[^0]: $P(h)=$ prior probability of a hypotheses h
 $P(D)=$ prior probability that data D will be observed
 $P(h \mid D)=$ probability that h holds given that D is observed
 $P(D \mid h)=$ probability of observing data D given h
 We can estimate the probability that h holds under the condition that the training data D is observed.
 We can, then, estimate the probability that D is sampled under h.
 Note: The conditional probability does not necessarily reflect a causal relationship, if any

