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Today’s topic

• Basics of Bayesian inference
• Principle and implementation of naïve 

Bayes method
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Conditional Probability
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Bayes Theorem
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Bayesian Inference

• Bayesian inference is a method of statistical 
inference in which some kind of evidence or 
observations are used to calculate the 
probability that a hypothesis may be true, or else 
to update its previously-calculated probability. 

From Wikipedia
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Addendum

• Suppose evidence is x, and cause is m
– Candidates of causes are: mi

• Bayesian inference is a method to infer m 
from mi by calculating p(mi|x) with a method
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A framework of Bayesian inference
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p(mi|x)

p(m1|x)

Identification 
of the cause

Estimation of p(m) and p(x|m)

• p(m) is estimated from occurrence frequencies of the 
class event m

• How about p(x|m) ?
– p(x|m) is the probability of sample x  generated from model m.

This is the description of the model m.
– Maybe normal, maybe multinomial,…
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Posterior prob.

Conditional Prior prob.
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Bayesian inference and naïve 
Bayes

• Bayesian inference

• Naïve Bayes
– A simplified method of Bayesian inferene
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Model description by naïve Bayes

• Suppose that an evidence x is described 
with features
– Very common
– Features may be gender, age, location, 

weight, height, interests,…, product names, 
unit price, date of sales, features of 
customers,…

• Suppose that features are independent…
– “No way” should be words of descent people. 

Therefore the assumption is called “naïve.” 

Are weight and height independent?
No!  i.e., features may be dependent
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Features

• If <a1,…,an>  is a vector of features of “evidence” 
x , we may describe it by x and also by <a1,…,an>.

• Under such circumstances, a feature vector is the 
sample itself
– Ex.
– If Jim’s feature vector is <172, 63, computer science,

19>, <172, 63, computer science, 19> is Jim himself
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Features are independent, if…

• Suppose <a1,…,an> is the feature vector of 
evidence x. The features are independent if:

• whereas “conditional independence” is 
defined as
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Model description by Naïve Bayes

is
• Describe evidence x by its features as

<a1,…,an>
• And suppose that:
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Conditional independence

• Independence and cond. ind. are different
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Illustrations. Each rectangle is an event. Each event has the same 
probability of occurrence. Events R, B and Y are in red, blue, yellow. 
Overlaps of events R and B are in purple. In both of these, Pr	ሺܴ ∩ ሻܻ|ܤ 	ൌ Pr	ሺܴ|ܻሻPr	ሺܤ|ܻሻ and Pr	ሺܴ ∩ ൓ܻሻ|ܤ 	് Pr	ሺܴ|൓ܻሻPr	ሺܤ|൓ܻሻ
Therefore Pr	ሺܴ ∩ ሻܤ 	് Pr	ሺܴሻPr	ሺܤሻ

https://en.wikipedia.org/wiki/Conditional_independence



Coming back

• What we want is p(m|x).

Therefore
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by naïve Bayes
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Why is it good?

• We want to circumvent a problem caused 
by the number of features.

Is it a problem to have large set of features?
• Yes. If there are many features, large 

dataset is required to estimate the 
parameters.
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The number of features
• Suppose that the variables take discrete values. Let us 

use an example (not in general formulae)
• In <A1,A2,A3,A4>, the four variables take values high, 

middle, and low (abbreviated as 0,1, and 2).
• No distribution is assumed (no a priori knowledge). In 

such a case, if for any of 34=81 <A1,A2,A3,A4> 
combinations one probability p<A1,A2,A3,A4> is determined, 
the distribution is determined. Since the sum of them is 
restricted to be１, 80 values are to be determined.

• How large should be the dataset to estimate these 
values from data?
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Multinomial distribution

• Each sample (evidence) supposed to be independent.
• Frequency of occurrences of <A1,A2,A3,A4> distributes 

according to multinomial distribution.
• Multinomial Dist.: Suppose that event ei occurs with 

probability pi (sum of pi is 1). In n repetitions, the 
probability that event ei occurs ni times is

• Note that its expectation, variance, and covariance are
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The number of features
• Because p<A1,A2,A3,A4> occurs 81 times, suppose true value p<0,0,0,0>

=1/81 and let us estimate it.
• <0,0,0,0> follows binomial distribution. Then for n=8100, mean 

np<0,0,0,0> =100, variance np<0,0,0,0> (1 p<0,0,0,0>)98.8, SD 9.9 
• Therefore to estimate p<0,0,0,0> , if n=8100 ,the probability that the 

occurrences of <0,0,0,0> is in 10010 (error rate is lower than 10%) 
about 68% (approx. 1σ )
– bad :-(

• But if we suppose the features are independent, since
pAi=0 are only to be estimated, we can use all the data (i.e., n=8100)

• Then: if pAi=0 =1/3, for n=8100, mean 2700, variance 1800, SD 42.4. 
thTe probability that it is in 2700270 (error rate less than 10%) is greater 
than about 1  2/one billion (6)
– For n=300,  mean 100, variance66.7, SD8.16, therefore the probability that 

is in 10010 (error rate less than 10%) is greater than 68%, but approximately
the same (greater than 1)

   00,0,0,0 iApp
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> x<-dbinom(0:200,8100,1/81)*8100
> plot(x,type="h",xlim=c(70,130))
> 
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The number of features
In summary
• To estimate p<A1,A2,A3,A4> , for n=8100, the 

probability that the error rate is less than 10% is about  
68% (approx. 1σ)

• On the other hand,  if we suppose independence 
of features as naïve Bayes
for n=300, the probability that the
error rate is less than 10% is greater 
than 68% but approx. the same
– For n=8100, the probability that the error

rate is less than 10% is >1  2/10^9（6）

Is everything OK?
• If the independence is really true, everything is OK
• But it never is.

– Suppose that you have to diagnose influenza or not.
– Clearly three features <cough, soar throat, fever> are not independent

• If we suppose independence, although they are not, what will happen?
• We cannot know what happens

– In fact, the probability estimated by naïve Bayes is completely garbage

• But in reality, naïve Bayes works well quite often, because
– Increase of errors caused by erroneous assumption of independence is 

canceled out by the increase of accuracy of parameter estimation based on 
the erroneous assumption

• Distribution is not estimated. We estimate class probability.
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Therefore naïve Bayes

• Shall we use it? (old people thought so)
• In fact it works often.

– Do not use it for probability estimation
– Works only for classification

• Let us use it for classification
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Naïve Bayes classifier
• In a previous slide, we have

suppose m1 is class1, m2 is class2
• Evidence x is a set of observations (only 1 sample) , 

each sample is described as <A1,…,An>.
– Each attribute values are discrete

• Each class is statistically independent
• Class is characterized by the distribution of attributes

– For each class, Ai ‘s value ai1,…,aik distributes according to the 
probability pi1,…,pik (to estimate them is to learn)
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Naïve Bayes classifier

• Under these assumptions
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Naïve Bayes classifier
• The parameters (probabilities pi1,…,pik ) to 

describe a model m are estimated as follows.
• Suppose the model m generated n-dimensional 

samples <yj1,…,yjn> (j=1,…,N) 

• Build a histogram of <y1i,…,yNi> for the attributes 
Ai (i=1,…,n) , i.e., if an Ai takes three values 1,2, 
and 3, count occurrences of 1, 2, and 3.

• Based on this, estimate pi1, pi2, pi3 , i.e., pi1=counts 
of 1/N, pi2=counts of 2/N,  pi3=counts of 3/N.
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Play tennis
Outlook Temp. Humidity Windy Play

Sunny Hot High No No

Sunny Hot High Yes No

Overcast Hot High No Yes

Rainy Mild High No Yes

Rainy Cool Normal No Yes

Rainy Cool Normal Yes No

Overcast Cool Normal Yes Yes

Sunny Mild High No No

Sunny Cool Normal No Yes

Rainy Mild Normal No Yes

Sunny Mild Normal Yes Yes

Overcast Mild High Yes Yes

Overcast Hot Normal No Yes

Rainy Mild High Yes No

From Tom Mitchell’s book Machine Learning. Often used to help students to estimate by hand.

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

Predict whether Play=Yes or 
Play=No for the following unseen 
sample i.e., a sample not in the 
training dataset.

Two classes: Play=Yes to play tennis 
and Play=No for not to play tennis
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First, divide samples into classes
Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No
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Count and estimate

Sunny 2 Hot 2 High 3 False 6

Overcast4 Mild 4 Normal 6 True 3

Rainy 3 Cool 3

Sum 9 Sum 9 Sum 9 Sum 9

Sunny 2/9 Hot 2/9 High 3/9 False 6/9

Overcast4/9 Mild 4/9 Normal 6/9 True 3/9

Rainy 3/9 Cool 3/9e
st

im
a
ti
o
n

fr
e
q
ue

n
c
y

A1=OutlookA2=Temperatur A3=Humidity A4=Windy Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

Sunny 3 Hot 2 High 4 False 2

Overcast0 Mild 2 Normal 1 True 3

Rainy 2 Cool 1

Sum 5 Sum 5 Sum 5 Sum 5

Sunny 3/5 Hot 2/5 High 4/5 False 2/5

Overcast0/5 Mild 2/5 Normal 1/5 True 3/5

Rainy 2/5 Cool 1/5

A3=Humidity A4=Windy

es
ti
m

a
ti
o
n

fr
e
q
u
e
nc

y

A1=OutlookA2=Temperatur
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Put them into one table

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

m=PlayA1=Outlook A2=Temperature A3=Humidity A4=Windy

Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

p(m) is this
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Inference

p(Play=yes | x )   
= p(Outlook=Sunny | Play=yes) 

* p(Temp=Cool | Play=yes) 
* p(Humidity=High | Play=yes) 
* p(Windy=True | Play=yes) 
* p(Play=yes)  / p(x) 

= (2/9) * (3/9) * (3/9) * (3/9) 
*(9/14) / p(x) 

= 0.0053 / p(x) 

Outlook Temp. Humidity Windy Play

Sunny Cool High True ? Unseen x
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p(Play=no | x )   
= p(Outlook=Sunny | Play=no) 

* p(Temp=Cool | Play=no) 
* p(Humidity=High | Play=no) 
* p(Windy=True | Play=no) 
* p(Play=no)  / p(x) 

= (3/5) * (1/5) * (4/5) * (3/5)  
*(5/14) / p(x)

= 0.0206 / p(x)

Note: 1/p(x) turns out to be no head ache; any counterpart have it

The results say p(Play=yes | x ) < p(Play=no | x ) 
i.e., didn’t (or won’t) “play tennis”
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In R
# after installing package e1071
> library(e1071)
> setwd("D:/R/Sample")
> xy<-read.csv("04PlayTennis.csv", header=TRUE)
> xyt<-read.csv("04PlayTennisTest01.csv",header=TRUE,as.is=TRUE)
> tt<-data.frame(factor(xyt[,1],levels=levels(xy[,1])))
> for (i in 2:5) {
>   tt<-data.frame(tt,factor(xyt[,i],levels=levels(xy[,i]))) 
> }
> names(tt)<-names(xy)
> tt
Outlook Temp. Humidity Windy Play

1   Sunny  Cool     High  True <NA>
> m <- naiveBayes(xy[,-5], xy[,5])
> predict(m, tt)
[1] No
Levels: No Yes
> 

We cannot use xyt as xy （as as.is=FALSEで）. The reason is that unseen sample, here, is just one sample and all the 
values for each categorical attribute are not included and those levels in xy could not be referred. 44

Note

# package e107 をインストールした後、
> library(e1071)
> setwd("D:/R/Sample")
> xy<-read.csv("04PlayTennis.csv", header=TRUE)
> xyt<-read.csv("04PlayTennisTest01.csv", header=TRUE, as.is=TRUE)
> tt<-apply(as.data.frame(1:5),1,

function(i) factor(xyt[,i],levels=levels(xy[,i])))
> tt
[1] Sunny Cool  High  True  <NA> 
Levels: Overcast Rainy Sunny Cool Hot Mild High Normal False True No Yes
> 

Apply cannot be used for a For loop because levels are combined when apply is used.
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Note 2:
We can get prediction probability by just adding type="raw" as an argument 
to the function “predict”

> predict(m, tt, type="raw")
No       Yes

[1,] 0.7954173 0.2045827
> 
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Parameters and training error
> m

Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = xy[, -5], y = xy[, 5])

A-priori probabilities:
xy[, 5]

No       Yes 
0.3571429 0.6428571 

Conditional probabilities:
Outlook

xy[, 5]  Overcast     Rainy     Sunny
No  0.0000000 0.4000000 0.6000000
Yes 0.4444444 0.3333333 0.2222222

Temp.
xy[, 5]      Cool       Hot      Mild

No  0.2000000 0.4000000 0.4000000
Yes 0.3333333 0.2222222 0.4444444

Humidity
xy[, 5]      High    Normal

No  0.8000000 0.2000000
Yes 0.3333333 0.6666667

Windy
xy[, 5]     False      True

No  0.4000000 0.6000000
Yes 0.6666667 0.3333333

> table(predict(m, xy[,-5]), xy[,5])

No Yes
No   4   0
Yes  1   9

> 

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

m=PlayA1=Outlook A2=Temperature A3=Humidity A4=Windy

confusion matrix: 

No is the truth

Yes is predicted
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An exercise
• Suppose you are given a training dataset at the left and as 

an unseen sample a sample at the right is given. Use  
Naïve Bayes and bet “go skiing” value

• The dataset is in: http://www.sakurai.comp.ae.keio.ac.jp/classes/ 
IntInfProc-class/2017/04PlaySkii.zip

snow weather season
physical
condition

go skiing

sticky foggy low rested no
fresh sunny low rested yes
fresh foggy low rested yes

frosted foggy low injured no
fresh sunny low injured no
sticky sunny low rested yes
fresh foggy low rested yes
sticky sunny mid rested yes
fresh sunny high rested yes
fresh windy low rested yes

frosted foggy mid rested no
fresh windy low rested yes
fresh sunny mid rested yes

frosted windy high tired no

snow wether season sical conditgo skiing

sticky windy mid tired ?
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Summary
• Bayesian inference

– Get the posterior probability of causes (models) based on 
gathered evidence, and infer the cause

• Difficulty
– (if complex models are to be used) the number of data to 

be used to determine the parameters is large
• Naïve Bayes

– A good solution to address it
– Assumes attributes (to describe samples) are conditionally 

independent
• May not be true but works.

– Is not old fashoned
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