Today'’s topic
+ Basics of Bayesian inference
Naive Bayes Classifier

* Principle and implementation of naive
Bayes method
Akito Sakurai
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Bayesian Inference

* Bayesian inference is a method of statistical
inference in which some kind of evidence or
observations are used to calculate the
probability that a hypothesis ma’y be true, or else
to update its previ ust—ca/lc(anted probability.

p(m |x)-p(x“‘(2)p(”‘)

Addendum

» Suppose evidence is x, and cause is m
— Candidates of causes are;

» Bayesian inference is-a method to infer m
from m; by calculating p(m;)x) with a method

& pCx|mp(m)
p(x)

p(m

A framework of Bayesian inference
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Estimation of p(m) and p(x|m)

Conditional  Prior prob.
TR, EE
P p(x)

Posterior prob.

+ p(m) is estimated from occurrence frequencies of the
class event m
* How about p(x|m) ?

— p(x]m) is the probability of sample x generated from model m.
This is the description of the model m.

— Maybe normal, maybe multinomial,...

Bayesian inference and naive
Bayes
» Bayesian inference

PUBIA) = (AR P} * P{B) AN

* Naive Bayes
— A simplified method of Bayesian inferene




Contents

+ Basics of probability
— Conditional probability and Bayes theorem
— Bayesian inference
* Naive Bayes
— What is “naive”
— The number of features
— Classifiers
— A simple example
—InR
— Training errors

Model description by naive Bayes

» Suppose that an evidence x is described
with featu res Are weight and height independent?

No! i.e., features may be dependent
— Very common —
— Features may begender, age, location,
weight, height, interests, ..., product names,
unit price, date of sales, features of
customers,...

» Suppose that features are independent...

—“No way” should be words of descent people.
Therefore the assumption is called “naive.”

Features

» If<a,,...,a,> is a vector of features of “evidence”
X , we may describe it by X and also by <a,,...,a,>.

* Under such circumstances, a feature vector is the
sample itself
- Ex.

— If Jim’s feature vector is <172, 63, computer science,
19>, <172, 63, computer science, 19> is Jim himself

Features are independent, if...

» Suppose <a,,...,a,> is the feature vector of
evidence X. The features are independent if:

PX =Xx)=p(A =a,...,A =a,)
“TTn(A=a)
» whereas “conditional independence” is

defined as
p(X =x|C=c)=p(A =a,...,A =3,/C=c)

~[TpA=alc=o

Model description by Naive Bayes

is
» Describe evidence x by its features as
<ay,...,a,>
* And suppose that:
P(X =x)=p(A =a,....A =a,)
=H P(A =3a)
p(X =x|C=c)=p(A =a,...,A =3,/C=c)
=Hp(A1:ai|C:C)
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Conditional independence

* Independence and cond. ind. are different

llustrations. Each rectangle is an event. Each event has the same
probability of occurrence. Events R, B and Y are in red, blue, yellow.
Overlaps of events R and B are in purple. In both of these,

Pr(R N B|Y) = Pr(R|Y)Pr(B|Y) and Pr(R n B|=Y) # Pr(R|-Y)Pr(B|-Y)
Therefore Pr(R N B) # Pr(R)Pr(B)

https://en.wikipedia.org/wiki/Conditional_independence 21




Coming back

* What we want is p(m|x).
p(x.m) _ p(x|m)

PmO="000 = oo p(X)
Therefore
Hp(ailm)
p(m|x) =-=————p(m)
p(x)

by naive Bayes
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Why is it good?

* We want to circumvent a problem caused
by the number of features.

Is it a problem to have large set of features?

* Yes. If there are many features, large
dataset is required to estimate the
parameters.
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he number of features:: ==

+ Suppose that the variables take discrete values. Let us
use an example (not in general formulae)

* In <A.,A,A3A>, the four variables take values high,
middle, and low (abbreviated as 0,1, and 2).

* No distribution is assumed (no a priori knowledge). In
such a case, if for any of 34=81 <A, A, A3,A,>
combinations one probability p<aqa,a5a,4> is determined,
the distribution is determined. Since the sum of them is
restricted to be1, 80 values are to be determined.

* How large should be the dataset to estimate these

values from data?
25

Multinomial distribution

» Each sample (evidence) supposed to be independ

+ Frequency of occurrences of <A;,A,,A;,A,> distributes
according to multinomial distribution.

+ Multinomial Dist.: Suppose that event e; occurs with
probability p; (sum of p; is 1). In n repetitions, the
probability that event e; occurs n; times is

n! n n
LR k
“nk!p] Py

P s 3 Py P =
!

» Note that its expectation, variance, and covariance are
E(N;) =np;, var(N;) = np;(1- p;), cov(N;, N ;) = —np; p;
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The number of features

Because pa, aa;a4- OCCUrS 81 times, suppose true value p.g -
=1/81 and let us estimate it.

«  <0,0,0,0> follows binomial distribution. Then for n=8100, mean
NP2 0,00- =100, variance Npy g g o- (1= P 0,00-)98.8, SD 9.9

* Therefore to estimate p_ . , if "=8100 ,the probability that the
occurrences of <0,0,0,0> is in 100£10 (error rate is lower than 10%)
about 68% (approx. 10)

— bad :-(
But if we suppose the features are independent, since P<vo00- = [TPaeo
Paizo @re only to be estimated, we can use all the data (i.e., n=8100)

* Then: if py, =1/3, for n=8100, mean 2700, variance 1800, SD ~42.4.
thTe probability that it is in 2700£270 (error rate less than 10%) is greater
than about 1 — 2/one billion (65)

— For n=300, mean 100, variance~66.7, SD~8.16, therefore the probability that
is in 10010 (error rate less than 10%) is greater than 68%, but approximately 28
the same (greater than 1o)




> x<-dbinom(0:200,8100,1/81)*8100
> plot(x,type="h",xlim=c(70,130))
>
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The number of features

In summary

* To estimate pa, a,a34,> » fOr n=8100, the
probability that the error rate is less than 10% is about
68% (approx. 10)

* On the other hand, if we suppose independence
of features as naive Bayes
for n=300, the probability that the
error rate is less than 10% is greater
than 68% but approx. the same

— For n=8100, the probability that the error- . £7
rate is less than 10% is >1 — 2/10"9 (6c)

Is everything OK?

« Ifthe independence is really true, everything is OK
« Butit neveris.
— Suppose that you have to diagnose influenza or not.
— Clearly three features <cough, soar throat, fever> are not independent

« If we suppose independence, although they are not, what will happen?
« We cannot know what happens
— In fact, the probability estimated by naive Bayes is completely garbage

« Butin reality, naive Bayes works well quite often, because
— Increase of errors caused by erroneous assumption of independence is
canceled out by the increase of accuracy of parameter estimation based on
the erroneous assumption
« Distribution is not estimated. We estimate class probability.

31

Therefore naive Bayes

» Shall we use it? (old people thought so)

* In fact it works often.
— Do not use it for probability estimation
— Works only for classification

» Let us use it for classification

32

Naive Bayes classifier

[mi] <gtmy) \@”
* In a previous slide, we have nl—p 0 [ —
x| m i
p(mi )= 2% S pim) ST
p(Xx

suppose m, is class1, m, is class2
» Evidence x is a set of observations (only 1 sample) ,
each sample is described as <A,...,A>.
— Each attribute values are discrete
» Each class is statistically independent
+ Class is characterized by the distribution of attributes
— For each class, A; ‘s value &,...,a, distributes according to the
probability p;j,...,p; (to estimate them is to learn)

33

Naive Bayes classifier

* Under these assumptions

p(xm;) ‘mMAP:argman p(m; ‘X)‘

p(m; |X):W p(m;)
~ p(x‘mj)p(mj)
=p(@,...,a, [m;)p(m;)

:p(m,-)ljp(ailm,») Ew Wx)

E\.. [> \

%‘) » /




Naive Bayes classifier

» The parameters (probabilities p;;,...,p; ) to
describe a model m are estimated as follows.

» Suppose the model m generated n-dimensional
samples <y;;,....y;> (j=1,...,N)

* Build a histogram of <y,;,...,yy> for the attributes
A (i=1,...,n), i.e., if an A; takes three values 1,2,
and 3, count occurrences of 1, 2, and 3.

» Based on this, estimate p;;, pi,, Pi3 » i.€., p;;=counts
of 1/N, p;,=counts of 2/N, p;;=counts of 3/N.
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Play tennis First, divide samples into classes
Outlook Temp. Humidity Windy Play . Outlook Temp. Humidity Windy Play Outlook Temp. Humidity Windy Play
Sunny  Hot High No No ng ;:ass?\‘s. flay_;{tes t(l) pltay te,nms Overcast Hot High False Yes Sunny Hot High False No
. ani ay=No T1or not to play tennis . " " .
Sunny  Hot High Yes No Y play Rainy Mild High False Yes Sunny Hot High True No
Overcast Hot High No Yes Rainy Cool Normal |False Yes Rainy Cool Normal  True No
Rainy Mild High No Yes Overcast Cool Normal | True Yes Sunny Mild High False No
Rainy  Cool  Normal No Yes Predict whether Play=Yes or Sunny Cool  Normal False Yes Rainy  Mild High  True  No
Rainy Cool Normal  Yes No Play_lNc? for the fO||TWIngt f'mtsheen Rainy Mild Normal |False Yes
sample I.e., a sample not In the "
Overcast Cool Normal  Yes Yes trainipng dataset P Sunny  Mild Normal  True Yes
Sunny  Mild High No No ’ Overcast Mild High True Yes
Sunny  Cool Normal  No Yes Overcast Hot Normal |False Yes
Rainy Mild Normal  No Yes ‘Outlook Temp. Humidity Windy Play |
i ?
Sunny  Mild Normal Yes Yes ‘Sunny Cool High True - |
Overcast Mild High Yes Yes
Overcast Hot Normal  No Yes
Rainy Mild High Yes No
From Tom Mitchell’'s book Machine Learning. Often used to help students to estimate by hahd. 39
Count and estimate Put them into one table
[Outok [Temp._|umidty [Windy | Play
OvercastHot Hgh Fasa Yes
Rainy  Mid  |Mgh Fase |Yes
Al1=Outlook :2=Temperatur A3=Humidity _A4=Windy Outiook | Temp. Humidty Windy Play o T T s
Sumny 2 Hot 2 High 3 False 6 Overcast Hot High | False |Yes Sunmy (Cool |Normal Flse | Yas
Z lovercas4 Mid 4 Normal & True 3 Rainy _|Mid_|High _|False [Yes p(m) is this oy s ool o s
O 4 Rainy ool Normal False Yes Overcast s [gn Tre ves
£ |Rainy 3 Cool 3 L Overcast Cool Normal | True |Yes (Overcast ot Nommal Fase _Yes
Sum 9 Sum 9 Sum 9  Sum 9 Sunny  Cool |Normal |False Yes [Outiook Temp. | Humidy Windy Play |
5 [Sunny 2/9 Hot 2/9 High 3/9 False 6/9 Rainy  Mid Normal False Yes Sumny Hot  High  [Fake No
£ |Overcasi4/9 Mild  4/9 Normal 6/9 True 3/9 Sunny Mid [Normal [True |Yes e e ey v
% |Rain 3/9 [Cool  |3/9 Overcast Mild High  |True Yes Sunny (W34 Jrign [Faies Mo
ainy o0 Overcast Hot _ Normal _False Yes Rany _Mia__Hgh _|Tue N
A1=Outlook 2=Temperatur A3=Humidity = A4=Windy A1=Outlook A2=Temperature A3=Humidity A4:\)V dy m=Play
Sunny 3 Hot 2 High 4 False 2 e —— Yes No Yes No Yes No Yes\No Yes No
3 ’ : v , y Outlook _ Temp. Humidity |Windy Play -
§ |Overcasld Mid 2 Normal 1 True 3 Surmy et [Hagh  Falee [N Sunny 2 3 Hot 2 2 |High 3 4 Fase 6 2 0 5
g Rainy 2 Cool 1 Sunny  Hot High True No Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3
Sum 5  Sum 5  Sum 5 Sum 5 Rainy C‘f‘" Normal _|True |No Rainy |3 2 Cool 3 1 /
5 [sunmy 3/5 Hot  2/5 High  4/5 False 2/5 2::3 o ::z: Fale 0 Sunny 2/9 3/5 Hot  2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/145/14
g Overcasi0/5 Mild 2/5 Normal 1/5 True 3/5 Overcast4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 |3/5
8 Rainy  2/5 Cool 1/5 40 Rainy 3/9 2/5 Cool 3/9 1/5 41




p(m; [x) = p(x|m;)p(m;)/p(x)
=p(@,....a, |m))p(m;)/ p(x)

:[H e \m,)jp(m,) p(x)

Inference

|Outlook Temp. Humidity Windy Play |
|Sunny Cool High True ? | T Unseen X

p(Play=no | X )
= p(Outlook=Sunny | Play=no)
* p(Temp=Cool | Play=no)
* p(Humidity=High | Play=no)
* p(Windy=True | Play=no)
* p(Play=no) /p(x)
=(3/5) * (1/5) * (4/5) * (3/5)

p(Play=yes | x )
= p(Outlook=Sunny | Play=yes)
* p(Temp=Cool | Play=yes)
* p(Humidity=High | Play=yes)
* p(Windy=True | Play=yes)
* p(Play=yes) /p(x)
=(2/9) * (3/9) * (3/9) * (3/9)

#(9/14) / p(x) *(5/14) / p(x)
=0.0053/ p(x) =0.0206 / p(x)
The results say p(Play=yes | x ) < p(Play=no | x )
i.e., didn’t (or won't) “play tennis”
Note: 1/p(x) turns out to be no head ache; any counterpart have it 42
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In R

after installing package el071

library(el1071)

setwd(*'D:/R/Sample™)

xy<-read.csv('04PlayTennis.csv", header=TRUE)

xyt<-read.csv("'04PlayTennisTest0l.csv", header=TRUE,as. is=TRUE)

tt<-data.frame(factor(xyt[,1], levels=levels(xy[,1])))

for (i in 2:5) {
tt<-data.frame(tt,factor(xyt[,i],levels=levels(xy[,i])))

names(tt)<-names(xy)

tt

Outlook Temp. Humidity Windy Play
Sunny Cool High True <NA>

m <- naiveBayes(xy[,-5], xy[.51)

predict(m, tt)

[1] No

Levels: No Yes

>

VVVVVVVVVYVH

V VB

We cannot use xyt as xy (as as.is=FALSET). The reason is that unseen sample, here, is just one sample and all the

Note

Apply cannot be used for a For loop because levels are combined when apply is used.

VVVVVH

>

[1] Sunny Cool High True <NA>
Levels: Overcast Rainy Sunny Cool Hot Mild High Normal False True No Yes

>

package €107 ZAVRb—)LLT=t4.
library(el071)
setwd(*'D:/R/Sample’™)
xy<-read.csv(*'04PlayTennis.csv", header=TRUE)
xyt<-read.csv("'04PlayTennisTestOl.csv", header=TRUE, as.is=TRUE)
tt<-apply(as.data.frame(1:5),1,
function(i) factor(xyt[,i],levels=levels(xy[,i])))
tt

values for each categorical attribute are not included and those levels in xy could not be referred. 45
We can get prediction probability by just adding type="raw" as an argument
to the function “predict” « Basics of probability
> predict(m, tt, type="raw’) — Conditional probability and Bayes theorem
No Yes . .
[1,] 0.7954173 0.2045827 — Bayesian inference
> « Naive Bayes
— What is “naive”
— The number of features
— Classifiers
— A simple example
-InR
— Training errors
46 a7




Parameters and training error

>m

confusion matrix:

> table(predict(n, xy[,-51), xy[,51)

Naive Bayes Classifier for Discrete Predictors

call:
naiveBayes.default(x = xy[, -51. y = xy[. 51)

[No Yes

Yes is predigted

A-priori probabilities:
xy[. 51

No Yes
0.3571429 0.6428571

No is the truth

Conditional probabilities:

xy[, 5] Overcast Rainy Sunny
No 0.0000000 0.4000000 0.6000000
Yes 0.4444444 0.3333333 0.2222222

An exercise

» Suppose you are given a training dataset at the left and as
an unseen sample a sample at the right is given. Use
Naive Bayes and bet “go skiing” value

* The dataset is in: http://www.sakurai.comp.ae.keio.ac.jp/classes/
IntinfProc-class/2017/04PlaySkii.zip

Temp.
xvL. 51 Cool Hot Witd
o) 0.2000000 0.4000000 0.4000000 Al=Outlook | Az=Temperature | Ad=Humidity Ad=Windy | m=Play
Yes 0.3333333 0.2222222 0.4444444 Yes No Yes No Yes No Yes No Yes No
Sumy 2 3 ot 2 12 Hen |3 |4 |rake & 2 9 5
o s , Overcast4 0 Mid 4 2 Nomal & 1 Tue 3 3
L. 5 High  Normal " T
Ray 3 2 ool 3 1
No  0.8000000 0.2000000 * ——
Ves 03333333 00666667 Sunny_2/9 3/5 Hot 2/9 2/5 Hin |3/9 |4/5 Fale 6/ 2/5 9/145/14
Overcast4/0 0/5 Mid  4/9 2/5 Nommal 6/9 |1/5 True 3/ 3/5
Windy Rainy _3/0 2/5 Cool _3/0 1/5
xy[, 51

No  0.4000000 0.6000000
Yes 0.6666667 0.3333333

48

snow | weather | season | PSS! | o6 ciing l F ]
condition snow | wether | season bical condi go sking

stioky | foggy | low  rested . no [sticky | windy | mid | tired | 2 |

fresh | sunny | low | rested | yes

fresh fogey low rested es

frosted | foggy | low | injured | no

fresh | sunny | low | injured | no

sticky | sunny | low | rested | yes

fresh fogey low rested es

sticky sunn mid rested es

fresh | sunny | high | rested | yes

fresh | windy | low | rested | ves

frosted | fogey | mid | rested | no

fresh | windy | low | rested | ves

fresh | sunny mid rested es 49

frosted | windy | high | tired no

Summary

+ Bayesian inference

— Get the posterior probability of causes (models) based on
gathered evidence, and infer the cause

« Difficulty
— (if complex models are to be used) the number of data to
be used to determine the parameters is large
* Naive Bayes
— A good solution to address it

— Assumes attributes (to describe samples) are conditionally
independent
» May not be true but works.

— Is not old fashoned

50




