Today's topic

- Basics of Bayesian inference

Naïve Bayes Classifier

- Principle and implementation of naïve Bayes method

Akito Sakurai

Contents

- Basics of probability
- Conditional probability and Bayes theorem
- Bayesian inference
- Naïve Bayes
- What is "naïve"
- The number of features
- Classifiers
- A simple example
- In R
- Training errors

Conditional Probability

$=$$=$ \qquad .
$p(m \mid x) p(x)=p(x, m)=p(x \mid m) p(m)$

Bayes Theorem

$p(m \mid x)=\frac{p(x, m)}{p(x)}=\frac{p(x \mid m) p(m)}{p(x)}$

Contents

- Basics of probability
- Conditional probability and Bayes theorem
- Bayesian inference
- Naïve Bayes
- What is "naïve"
- The number of features
- Classifiers
- A simple example
- In R
- Training errors

Bayesian Inference

- Bayesian inference is a method of statistical inference in which some kind of evidence or observations are used to calculate the probability that a hypothesis may be true, or else to update its previously-calculated probability.

$$
p(m \mid x)=\frac{p(x \mid m) p(m)}{p(x)}
$$

From Wikipedia

Addendum

- Suppose evidence is x, and cause is m - Candidates of causes are: m_{i}
- Bayesian inference is a method to infer m from m_{i} by calculating $p\left(m_{i} \mid x\right)$ with a method

$$
p(m \mid x)=\frac{p(x \mid m) p(m)}{p(x)}
$$

A framework of Bayesian inference

Estimation of $p(m)$ and $p(x \mid m)$

$$
\underbrace{p(m \mid x)}_{\text {Posterior prob. }}=\frac{p(x, m)}{p(x)}=\overbrace{\frac{p(x \mid m)}{\text { Conditional }}}^{p(x)} \overbrace{p(m)}^{\text {Prior } \mathrm{p}}
$$

- $p(m)$ is estimated from occurrence frequencies of the class event m
- How about $p(x \mid m)$?
$-p(x \mid m)$ is the probability of sample x generated from model m. This is the description of the model m .
- Maybe normal, maybe multinomial,...

A framework of Bayesian inference

$\underset{\substack{\text { Possible } \\ \text { answers }}}{\text { models }} p\left(m_{i} \mid x\right)=\frac{p\left(x \mid m_{i}\right)}{p(x)} p\left(m_{i}\right)$
Statistical Identification inference of the cause

Bayesian inference and naïve Bayes

- Bayesian inference

- Naïve Bayes
- A simplified method of Bayesian inferene

Contents

- Basics of probability
- Conditional probability and Bayes theorem
- Bayesian inference
- Naïve Bayes
- What is "naïve"
- The number of features
- Classifiers
- A simple example
- In R
- Training errors

Features

- If $\left.<a_{1}, \ldots, a_{n}\right\rangle$ is a vector of features of "evidence" x, we may describe it by x and also by $<a_{1}, \ldots, a_{n}>$.
- Under such circumstances, a feature vector is the sample itself
- Ex.
- If Jim's feature vector is $<172,63$, computer science, $19\rangle,<172,63$, computer science, $19>$ is Jim himself

Model description by naïve Bayes

- Suppose that an evidence x is described
with features Are weight and height independent?
- Very common
- Features may be gender, age, location, weight, height, interests,..., product names, unit price, date of sales, features of customers,...
- Suppose that features are independent...
- "No way" should be words of descent people. Therefore the assumption is called "naïve."

Features are independent, if...

- Suppose $<a_{1}, \ldots, a_{n}>$ is the feature vector of evidence x. The features are independent if:

$$
\begin{aligned}
p(X=x) & =p\left(A_{1}=a_{1}, \ldots, A_{n}=a_{n}\right) \\
& =\prod_{i=1}^{n} p\left(A_{i}=a_{i}\right)
\end{aligned}
$$

- whereas "conditional independence" is defined as

$$
\begin{aligned}
p(X=x \mid C=c) & =p\left(A_{1}=a_{1}, \ldots, A_{n}=a_{n} \mid C=c\right) \\
& =\prod_{i=1}^{n} p\left(A_{i}=a_{i} \mid C=c\right)
\end{aligned}
$$

Model description by Naïve Bayes

is

- Describe evidence x by its features as

$$
<a_{1}, \ldots, a_{n}>
$$

- And suppose that:

$$
\begin{aligned}
& \begin{array}{l}
p(X=x)=p\left(A_{1}=a_{1}, \ldots, A_{n}=a_{n}\right) \\
=\prod_{i=1}^{n} p\left(A_{i}=a_{i}\right)
\end{array} \\
& \begin{aligned}
p(X=x \mid C=c) & =p\left(A_{1}=a_{1}, \ldots, A_{n}=a_{n} \mid C=c\right) \\
& =\prod_{i=1}^{n} p\left(A_{i}=a_{i} \mid C=c\right)
\end{aligned}
\end{aligned}
$$

Conditional independence

- Independence and cond. ind. are different

Illustrations. Each rectangle is an event. Each event has the same probability of occurrence. Events R, B and Y are in red, blue, yellow. Overlaps of events R and B are in purple. In both of these, $\operatorname{Pr}(R \cap B \mid Y)=\operatorname{Pr}(R \mid Y) \operatorname{Pr}(B \mid Y)$ and $\operatorname{Pr}(R \cap B \mid \neg Y) \neq \operatorname{Pr}(R \mid \neg Y) \operatorname{Pr}(B \mid \neg Y)$ Therefore $\operatorname{Pr}(R \cap B) \neq \operatorname{Pr}(R) \operatorname{Pr}(B)$

Coming back

- What we want is $p(m \mid x)$.
$p(m \mid x)=\frac{p(x, m)}{p(x)}=\frac{p(x \mid m)}{p(x)} p(m)=\frac{p\left(a_{1}, \ldots, a_{n} \mid m\right)}{p(x)} p(m)$

Therefore

$$
p(m \mid x)=\frac{\prod_{i=1}^{n} p\left(a_{i} \mid m\right)}{p(x)} p(m)
$$

Contents

- Basics of probability
- Conditional probability and Bayes theorem
- Bayesian inference
- Naïve Bayes
- What is "naïve"
- The number of features
- Classifiers
- A simple example
- In R
- Training errors

Why is it good?

- We want to circumvent a problem caused by the number of features.
Is it a problem to have large set of features?
- Yes. If there are many features, large dataset is required to estimate the parameters.

HThe number of features

- Suppose that the variables take discrete values. Let us use an example (not in general formulae)
- In $<A_{1}, A_{2}, A_{3}, A_{4}>$, the four variables take values high, middle, and low (abbreviated as 0,1, and 2).
- No distribution is assumed (no a priori knowledge). In such a case, if for any of $3^{4}=81<A_{1}, A_{2}, A_{3}, A_{4}>$ combinations one probability $p_{<A_{1}, A_{2}, A_{3}, A_{4}>}$ is determined, the distribution is determined. Since the sum of them is restricted to be1, 80 values are to be determined.
- How large should be the dataset to estimate these values from data?

Multinomial distribution

- Each sample (evidence) supposed to be independe

The number of features

- Frequency of occurrences of $<\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}>$ distributes according to multinomial distribution.
- Multinomial Dist.: Suppose that event e_{i} occurs with probability p_{i} (sum of p_{i} is 1). In n repetitions, the probability that event e_{i} occurs n_{i} times is

$$
p\left(n_{1}, \ldots, n_{k} ; n, p_{1}, \ldots, p_{k}\right)=\frac{n!}{n_{1}!\cdots n_{k}!} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}
$$

- Note that its expectation, variance, and covariance are

$$
E\left(N_{i}\right)=n p_{i}, \operatorname{var}\left(N_{i}\right)=n p_{i}\left(1-p_{i}\right), \operatorname{cov}\left(N_{i}, N_{j}\right)=-n p_{i} p_{j}
$$

- Because $p_{\left.<A_{1}, A_{2}, A_{3}, A_{4}\right\rangle}$ occurs 81 times, suppose true value $p_{<0,0,0,0>}$ $=1 / 81$ and let us estimate it.
- $<0,0,0,0>$ follows binomial distribution. Then for $n=8100$, mean $n p_{<0,0,0,0\rangle}=100$, variance $n p_{<0,0,0,0>}\left(1-p_{<0,0,0,0\rangle}\right) \approx 98.8$, SD ≈ 9.9
- Therefore to estimate $p_{<0,0,0,0>}$, if $n=8100$,the probability that the occurrences of $<0,0,0,0>$ is in 100 ± 10 (error rate is lower than 10%) about 68% (approx. 1σ)
- bad:-1
- But if we suppose the features are independent, since $p_{<0,0,0,0\rangle}=\prod p_{\mathrm{A}=0}$ $p_{A i=0}$ are only to be estimated, we can use all the data (i.e., $n=8100$)
- Then: if $p_{A i=0}=1 / 3$, for $n=8100$, mean 2700 , variance $1800, \mathrm{SD} \approx 42.4$. thTe probability that it is in 2700 ± 270 (error rate less than 10%) is greater than about $1-2$ /one billion (6σ)
- For $n=300$, mean 100 , variance $\approx 66.7, \mathrm{SD} \approx 8.16$, therefore the probability that is in 100 ± 10 (error rate less than 10%) is greater than 68%, but approximately the same (greater than 1σ)

The number of features

In summary

- To estimate $p_{<A_{1}, A_{2}, A_{3}, A_{4}>}$, for $n=8100$, the probability that the error rate is less than 10% is about 68\% (approx. 1 σ)
- On the other hand, if we suppose independence of features as naïve Bayes for $n=300$, the probability that the error rate is less than 10% is greater than 68% but approx. the same
- For $n=8100$, the probability that the error rate is less than 10% is $>1-2 / 10^{\wedge} 9(6 \sigma)$

Is everything OK?

- If the independence is really true, everything is OK
- But it never is
- Suppose that you have to diagnose influenza or not.
- Clearly three features <cough, soar throat, fever> are not independent
- If we suppose independence, although they are not, what will happen?
- We cannot know what happens
- In fact, the probability estimated by naïve Bayes is completely garbage
- But in reality, naïve Bayes works well quite often, because
- Increase of errors caused by erroneous assumption of independence is canceled out by the increase of accuracy of parameter estimation based on the erroneous assumption
- Distribution is not estimated. We estimate class probability.

Therefore naïve Bayes

- Shall we use it? (old people thought so)
- In fact it works often.
- Do not use it for probability estimation
- Works only for classification
- Let us use it for classification

Naïve Bayes classifier

- In a previous slide, we have

$$
p(m \mid x)=\frac{p(x \mid m)}{p(x)} p(m)
$$

suppose m_{1} is class1, m_{2} is class2

- Evidence x is a set of observations (only 1 sample), each sample is described as $<A_{1}, \ldots, A_{n}>$.
- Each attribute values are discrete
- Each class is statistically independent
- Class is characterized by the distribution of attributes
- For each class, A_{i} 's value $a_{i 1}, \ldots, a_{i k}$ distributes according to the probability $p_{i 1}, \ldots, p_{i k}$ (to estimate them is to learn)

Naïve Bayes classifier

- Under these assumptions
$\approx p\left(x \mid m_{j}\right) p\left(m_{j}\right)$
$=p\left(a_{1}, \ldots, a_{n} \mid m_{j}\right) p\left(m_{j}\right)$
$=p\left(m_{j}\right) \prod_{i=1}^{n} p\left(a_{i} \mid m_{j}\right)$
$m_{\mathrm{MAP}}=\arg \max _{j} p\left(m_{j} \mid x\right)$

Naïve Bayes classifier

- The parameters (probabilities $p_{i 1}, \ldots, p_{i k}$) to describe a model m are estimated as follows.
- Suppose the model m generated n-dimensional samples $\left\langle y_{j 1}, \ldots, y_{j n}\right\rangle(j=1, \ldots, N)$
- Build a histogram of $\left\langle y_{1 i}, \ldots, y_{N i}\right\rangle$ for the attributes $A_{i}(i=1, \ldots, n)$, i.e., if an A_{i} takes three values 1,2 , and 3 , count occurrences of 1,2 , and 3 .
- Based on this, estimate $p_{i 1}, p_{i 2}, p_{i 3}$, i.e., $p_{i 1}=$ counts of $1 / \mathrm{N}, p_{i 2}=$ counts of $2 / \mathrm{N}, p_{i 3}=$ counts of $3 / \mathrm{N}$.

Contents

- Basics of probability
- Conditional probability and Bayes theorem
- Bayesian inference
- Naïve Bayes
- What is "naïve"
- The number of features
- Classifiers
- A simple example
- In R
- Training errors

Play tennis

Outlook	Temp.	Humidity	Windy	Play
Sunny	Hot	High	No	No
Sunny	Hot	High	Yes	No
Overcast	Hot	High	No	Yes
Rainy	Mild	High	No	Yes
Rainy	Cool	Normal	No	Yes
Rainy	Cool	Normal	Yes	No
Overcast	Cool	Normal	Yes	Yes
Sunny	Mild	High	No	No
Sunny	Cool	Normal	No	Yes
Rainy	Mild	Normal	No	Yes
Sunny	Mild	Normal	Yes	Yes
Overcast	Mild	High	Yes	Yes
Overcast	Hot	Normal	No	Yes
Rainy	Mild	High	Yes	No

Two classes: Play=Yes to play tennis and Play=No for not to play tennis

Predict whether Play=Yes or Play=No for the following unseen sample i.e., a sample not in the training dataset.

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

First, divide samples into classes

Outlook	Temp.	Humidity	Windy	Play	Outlook	Temp.	Humidity	Windy	Play
Overcast	Hot	High	False	Yes	Sunny	Hot	High	False	No
Rainy	Mild	High	False	Yes	Sunny	Hot	High	True	No
Rainy	Cool	Normal	False	Yes	Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes	Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes	Rainy	Mild	High	True	No
Rainy	Mild	Normal	False	Yes					
Sunny	Mild	Normal	True	Yes					
Overcast	Mild	High	True	Yes					
Overcast	Hot	Normal	False	Yes					

Count and estimate

Put them into one table

Inference

\section*{| Outlook | Temp． | Humidity | Windy |
| :--- | :--- | :--- | :--- |
| Play | | | |} Sunny Cool High True ？

p（Play＝yes $\mid x$ ）

$=p$（Outlook＝Sunny \mid Play＝yes）
＊p（Temp＝Cool｜Play＝yes）
＊p（Humidity＝High｜Play＝yes）
＊ p （Windy＝True｜Play＝yes）
＊ p （Play＝yes）／p（x）
$=(2 / 9) *(3 / 9) *(3 / 9) *(3 / 9)$
＊（9／14）／p（x）
$=0.0053 / \mathrm{p}(\mathrm{x})$
$p\left(m_{j} \mid x\right)=p\left(x \mid m_{j}\right) p\left(m_{j}\right) / p(x)$
$=p\left(a_{1}, \ldots, a_{n} \mid m_{j}\right) p\left(m_{j}\right) / p(x)$
$=\left(\prod_{i=1}^{n} p\left(a_{i} \mid m_{j}\right)\right) p\left(m_{j}\right) / p(x)$

$$
=\left(\prod_{i=1}^{n} p\left(a_{i} \mid m_{j}\right)\right) p\left(m_{j}\right) / p(x)
$$

Unseen x
p （Play＝no｜x）
$=\mathrm{p}($ Outlook $=$ Sunny \mid Play $=$ no $)$
＊p（Temp＝Cool｜Play＝no） ＊ p （Humidity＝High｜Play＝no） ＊p（Windy＝True｜Play＝no）
＊ p （Play＝no）／ $\mathrm{p}(\mathrm{x})$
$=(3 / 5) *(1 / 5) *(4 / 5) *(3 / 5)$
＊（5／14）／p（x）
$=0.0206 / \mathrm{p}(\mathrm{x})$

The results say $p($ Play＝yes $\mid x)<p($ Play $=n o \mid x)$
e．，didn＇t（or won＇t）＂play tennis＂
Note： $1 / p(x)$ turns out to be no head ache；any counterpart have it 42

In R

```
# after installing package elo71
library(e1071)
> setwd("D:/R/Sample")
> xy<-read csv("04PIay
*)
> xyt<-read.csv("04PI ayTennisTest01.csv", header=TRUE, as.i is=TRUE
> tt<-data.frame(factor(xyt[,1],|evels=|evels(xy[,1])))
for (i in 2:5) (
tt<-data.frame(tt, factor(xyt[,i],levels=levels(xy[,i])))
> }
names(tt) <.names(xy)
t t
    Dutlook Temp. Humidity Windy PIay
1 Sunny Cool High True <NA>
> munny Cool_ naiveBayes(xy[,-5], xy[,5])
>m <- naivebayes(x
[1] No
Levels: No Yes
```

lev

Note

Apply cannot be used for a For loop because levels are combined when apply is used．

Contents

－Basics of probability

－Conditional probability and Bayes theorem
－Bayesian inference
－Naïve Bayes
－What is＂naïve＂
－The number of features
－Classifiers
－A simple example
－In R
－Training errors

```
# package e107 をインストールした後
```


package e107 をインストールした後

package e107

package e107

> setwd("Di/R/Sample")
> setwd("Di/R/Sample")
setwd("D:/R/Sample")
setwd("D:/R/Sample")
xy<-read.csv("04PI ayTennis.csv", header=TRUE)
xy<-read.csv("04PI ayTennis.csv", header=TRUE)

* xyt <-read.csv("04PI ayTennisTest01.csv", header=TRUE, as.is=TRUE)
* xyt <-read.csv("04PI ayTennisTest01.csv", header=TRUE, as.is=TRUE)
> tt<-apply(as.data.frame(1:5),1
> tt<-apply(as.data.frame(1:5),1
function(i) factor(xyt[,i],levels=levels(xy[,i])))
function(i) factor(xyt[,i],levels=levels(xy[,i])))
t t
t t
[1] Sunny Cool High True <NA>
[1] Sunny Cool High True <NA>
Levels: Overcast Rainy Sunny Cool Hot Mild High Normal False True No Yes
Levels: Overcast Rainy Sunny Cool Hot Mild High Normal False True No Yes
> RIbrary(e1071)

```
> RIbrary(e1071)
```


Note 2：

We can get prediction probability by just adding type＝＂raw＂as an argument to the function＂predict＂

Contents

－Basics of probability
－Conditional probability and Bayes theorem
－Bayesian inference
－Naïve Bayes
－What is＂naïve＂
－The number of features
－Classifiers
－A simple example
－In R
－Training errors

Parameters and training error

confusion matrix:

No is the truth

Summary

- Bayesian inference
- Get the posterior probability of causes (models) based on gathered evidence, and infer the cause
- Difficulty
- (if complex models are to be used) the number of data to be used to determine the parameters is large
- Naïve Bayes
- A good solution to address it
- Assumes attributes (to describe samples) are conditionally independent
- May not be true but works.
- Is not old fashoned
- Suppose you are given a training dataset at the left and as an unseen sample a sample at the right is given. Use Naïve Bayes and bet "go skiing" value
- The dataset is in: http://www.sakurai.comp.ae.keio.ac.jp/classes/ IntInfProc-class/2017/04PlaySkii.zip

snow	weather	season	physical condition	go skiing
sticky	foggy	low	rested	no
fresh	sunny	low	rested	yes
fresh	foggy	low	rested	yes
frosted	foggy	low	injured	no
fresh	sunny	low	injured	no
sticky	sunny	low	rested	yes
fresh	foggy	low	rested	yes
sticky	sunny	mid	rested	yes
fresh	sunny	high	rested	yes
fresh	windy	low	rested	yes
frosted	foggy	mid	rested	no
fresh	windy	low	rested	yes
fresh	sunny	mid	rested	yes
frosted	windy	high	tired	no

snow	wether	season	sical condil	go skiing
sticky	windy	mid	tired	$?$

