



| Contents  Basics of probability  Conditional probability and Bayes theorem Bayesian inference Naïve Bayes  What is "naïve"  Nhat is "naïve"  Classifiers  A simple example  In R  Training errors | <ul> <li>Model description by naïve Bayes</li> <li>Suppose that an evidence x is described<br/>with features Are weight and height independent?<br/>Not i.e., features may be dependent</li> <li>Very common</li> <li>Features may be gender, age, location,<br/>weight, height, interests,, product names,<br/>unit price, date of sales, features of<br/>customers,</li> <li>Suppose that features are independent</li> <li>"No way" should be words of descent people.<br/>Therefore the assumption is called "naïve."</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Features                                                                                                                                                                                          | Features are independent, if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>If <a<sub>1,,a<sub>n</sub>&gt; is a vector of features of "evidence"<br/>x, we may describe it by x and also by <a<sub>1,,a<sub>n</sub>&gt;.</a<sub></a<sub></li> </ul>                  | <ul> <li>Suppose <a1,,an> is the feature vector of evidence x. The features are independent if:</a1,,an></li> <li>p(X = x) = p(A1 = a1,,An = an)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          |
| • Under such circumstances, a feature vector is the sample itself                                                                                                                                 | $=\prod_{i=1}^n p(A_i=a_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Ex.</li> <li>If Jim's feature vector is &lt;172, 63, computer science, 19&gt;, &lt;172, 63, computer science, 19&gt; is Jim himself</li> </ul>                                           | <ul> <li>whereas "conditional independence" is<br/>defined as</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18                                                                                                                                                                                                | $p(X = x   C = c) = p(A_1 = a_1, \dots, A_n = a_n   C = c)$ $= \prod_{i=1}^n p(A_i = a_i   C = c)$ 19                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Model description by Naïve Bayes                                                                                                                                                                  | Conditional independence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| is                                                                                                                                                                                                | <ul> <li>Independence and cond. ind. are different</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Describe evidence x by its features as <a1,,an></a1,,an></li> <li>And suppose that:<br/>p(X = x) = p(A1 = a1,,An = an)</li> </ul>                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $= \prod_{i=1}^{n} p(A_i = a_i)$ $p(X = x   C = c) = p(A_1 = a_1, \dots, A_n = a_n   C = c)$ $= \prod_{i=1}^{n} p(A_i = a_i   C = c)$ 20                                                          | Illustrations. Each rectangle is an event. Each event has the same<br>probability of occurrence. Events R, B and Y are in red, blue, yellow.<br>Overlaps of events R and B are in purple. In both of these,<br>$Pr(R \cap B Y) = Pr(R Y)Pr(B Y)$ and $Pr(R \cap B \neg Y) \neq Pr(R \neg Y)Pr(B \neg Y)$<br>Therefore $Pr(R \cap B) \neq Pr(R)Pr(B)$                                                                                                                                                                                 |
| 20                                                                                                                                                                                                | https://en.wikipedia.org/wiki/Conditional_independence 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### Coming back

• What we want is p(m|x).

$$p(m \mid x) = \frac{p(x,m)}{p(x)} = \frac{p(x \mid m)}{p(x)} p(m) = \frac{p(a_1, \dots, a_n \mid m)}{p(x)} p(m)$$

Therefore

$$p(m \mid x) = \frac{\prod_{i=1}^{n} p(a_i \mid m)}{p(x)} p(m)$$

by naïve Bayes

## Contents

- · Basics of probability
  - Conditional probability and Bayes theorem
  - Bayesian inference
- Naïve Bayes
  - What is "naïve"
  - The number of features
  - Classifiers
  - A simple example
  - In R
  - Training errors

24

26

22

# Multinomial distribution

- Each sample (evidence) supposed to be independent
- Frequency of occurrences of <A<sub>1</sub>,A<sub>2</sub>,A<sub>3</sub>,A<sub>4</sub>> distributes according to multinomial distribution.
- Multinomial Dist.: Suppose that event *e<sub>i</sub>* occurs with probability *p<sub>i</sub>* (sum of *p<sub>i</sub>* is 1). In *n* repetitions, the probability that event *e<sub>i</sub>* occurs *n<sub>i</sub>* times is

$$p(n_1,...,n_k;n,p_1,...,p_k) = \frac{n!}{n_1!\cdots n_k!} p_1^{n_1}\cdots p_k^{n_k}$$

• Note that its expectation, variance, and covariance are  $E(N_i) = np_i, \, \mathrm{var}(N_i) = np_i(1-p_i), \, \mathrm{cov}(N_i,N_j) = -np_ip_j$ 

Why is it good?

- We want to circumvent a problem caused by the number of features.
- Is it a problem to have large set of features?
- Yes. If there are many features, large dataset is required to estimate the parameters.





- Suppose that the variables take discrete values. Let us use an example (not in general formulae)
- In <A<sub>1</sub>,A<sub>2</sub>,A<sub>3</sub>,A<sub>4</sub>>, the four variables take values high, middle, and low (abbreviated as 0,1, and 2).
- No distribution is assumed (no a priori knowledge). In such a case, if for any of 3<sup>4</sup>=81 <A<sub>1</sub>,A<sub>2</sub>,A<sub>3</sub>,A<sub>4</sub>> combinations one probability p<sub><A1,A2</sub>,A<sub>3</sub>,A<sub>4</sub>> is determined, the distribution is determined. Since the sum of them is restricted to be1, 80 values are to be determined.
- How large should be the dataset to estimate these values from data?

25

# The number of features

- Because  $p_{<\!\!\!\!\!\!A_1,A_2,A_3,A_4\!\!\!\!>}$  occurs 81 times, suppose true value  $p_{<\!\!\!\!0,0,0,0\!\!\!>}$  =1/81 and let us estimate it.
- <0,0,0,0> follows binomial distribution. Then for *n*=8100, mean  $np_{<0,0,0,0>}$ =100, variance  $np_{<0,0,0,0>}$  (1-  $p_{<0,0,0,0>}$ )≈98.8, SD ≈9.9
- Therefore to estimate  $p_{<0,0,0,>}$ , if n=8100, the probability that the occurrences of <0,0,0,0> is in  $100\pm10$  (error rate is lower than 10%) about 68% (approx.  $1\sigma$ ) - bad : - (
- But if we suppose the features are independent, since  $p_{a,0,0,0} = \prod p_{A,0}$ ,  $p_{Ai=0}$  are only to be estimated, we can use all the data (i.e., n=8100)
- Then: if  $p_{Ai=0}=1/3$ , for n=8100, mean 2700, variance 1800, SD  $\approx$ 42.4. th Te probability that it is in 2700±270 (error rate less than 10%) is greater than about 1 2/one billion (6 $\sigma$ )
  - For n=300, mean 100, variance≈66.7, SD≈8.16, therefore the probability that is in 100±10 (error rate less than 10%) is greater than 68%, but approximately the same (greater than 1σ)



### Naïve Bayes classifier

- The parameters (probabilities p<sub>i1</sub>,...,p<sub>ik</sub>) to describe a model *m* are estimated as follows.
- Suppose the model *m* generated *n*-dimensional samples <y<sub>i1</sub>,...,y<sub>in</sub>> (j=1,...,N)
- Build a histogram of  $\langle y_{1i}, ..., y_{Ni} \rangle$  for the attributes  $A_i$  (*i*=1,...,*n*), i.e., if an  $A_i$  takes three values 1,2, and 3, count occurrences of 1, 2, and 3.
- Based on this, estimate  $p_{i1}$ ,  $p_{i2}$ ,  $p_{i3}$ , i.e.,  $p_{i1}$ =counts of 1/N,  $p_{i2}$ =counts of 2/N,  $p_{i3}$ =counts of 3/N.

36

### Play tennis



Play

Two classes: Play=Yes to play tennis and Play=No for not to play tennis

Predict whether Play=Yes or Play=No for the following unseen sample i.e., a sample not in the training dataset.

Outlook Temp. Humidity Windy

High

True

| Outlook  | Temp. | Humidity | Windy | Play |
|----------|-------|----------|-------|------|
| Sunny    | Hot   | High     | No    | No   |
| Sunny    | Hot   | High     | Yes   | No   |
| Overcast | Hot   | High     | No    | Yes  |
| Rainy    | Mild  | High     | No    | Yes  |
| Rainy    | Cool  | Normal   | No    | Yes  |
| Rainy    | Cool  | Normal   | Yes   | No   |
| Overcast | Cool  | Normal   | Yes   | Yes  |
| Sunny    | Mild  | High     | No    | No   |
| Sunny    | Cool  | Normal   | No    | Yes  |
| Rainy    | Mild  | Normal   | No    | Yes  |
| Sunny    | Mild  | Normal   | Yes   | Yes  |
| Overcast | Mild  | High     | Yes   | Yes  |
| Overcast | Hot   | Normal   | No    | Yes  |
| Rainy    | Mild  | High     | Yes   | No   |

From Tom Mitchell's book Machine Learning. Often used to help students to estimate by hand.

Sunny Cool

# Count and estimate

|                         | A1=Out   | look | 2=Tem | peratur | A3=Hur | nidity | A4=V  | /indy |
|-------------------------|----------|------|-------|---------|--------|--------|-------|-------|
| Ove<br>Ledneuch<br>Rair | Sunny    | 2    | Hot   | 2       | High   | 3      | False | 6     |
|                         | Overcast | 4    | Mild  | 4       | Normal | 6      | True  | 3     |
|                         | Rainy    | 3    | Cool  | 3       |        |        |       |       |
|                         | Sum      | 9    | Sum   | 9       | Sum    | 9      | Sum   | 9     |
| estimation              | Sunny    | 2/9  | Hot   | 2/9     | High   | 3/9    | False | 6/9   |
|                         | Overcast | 4/9  | Mild  | 4/9     | Normal | 6/9    | True  | 3/9   |
|                         | Rainy    | 3/9  | Cool  | 3/9     |        |        |       |       |

|            | A1=Outlook |     | 2=Temperatur |     | A3=Humidity |     | A4=Windy |     |
|------------|------------|-----|--------------|-----|-------------|-----|----------|-----|
| frequency  | Sunny      | 3   | Hot          | 2   | High        | 4   | False    | 2   |
|            | Overcast   | 0   | Mild         | 2   | Normal      | 1   | True     | 3   |
|            | Rainy      | 2   | Cool         | 1   |             |     |          |     |
|            | Sum        | 5   | Sum          | 5   | Sum         | 5   | Sum      | 5   |
| ion        | Sunny      | 3/5 | Hot          | 2/5 | High        | 4/5 | False    | 2/5 |
| estimation | Overcast   | 0/5 | Mild         | 2/5 | Normal      | 1/5 | True     | 3/5 |
|            | Rainv      | 2/5 | Cool         | 1/5 |             |     |          |     |

| Outlook  | Temp. | Humidity | Windy | Play |
|----------|-------|----------|-------|------|
| Overcast | Hot   | High     | False | Yes  |
| Rainy    | Mild  | High     | False | Yes  |
| Rainy    | Cool  | Normal   | False | Yes  |
| Overcast | Cool  | Normal   | True  | Yes  |
| Sunny    | Cool  | Normal   | False | Yes  |
| Rainy    | Mild  | Normal   | False | Yes  |
| Sunny    | Mild  | Normal   | True  | Yes  |
| Overcast | Mild  | High     | True  | Yes  |
| Overcast | Hot   | Normal   | False | Yes  |

| Outlook | Temp. | Humidity | Windy | Play |
|---------|-------|----------|-------|------|
| Sunny   | Hot   | High     | False | No   |
| Sunny   | Hot   | High     | True  | No   |
| Rainy   | Cool  | Normal   | True  | No   |
| Sunny   | Mild  | High     | False | No   |
| Rainy   | Mild  | High     | True  | No   |

#### Contents

- · Basics of probability
  - Conditional probability and Bayes theorem
  - Bayesian inference
- · Naïve Bayes
  - What is "naïve"
  - The number of features
  - Classifiers
  - A simple example
  - In R
  - Training errors

37

#### First, divide samples into classes

| Outlook  | Temp. | Humidity | Windy | Play | Outlook | Temp. | Humidity | Windy |  |
|----------|-------|----------|-------|------|---------|-------|----------|-------|--|
| Overcast | Hot   | High     | False | Yes  | Sunny   | Hot   | High     | False |  |
| Rainy    | Mild  | High     | False | Yes  | Sunny   | Hot   | High     | True  |  |
| Rainy    | Cool  | Normal   | False | Yes  | Rainy   | Cool  | Normal   | True  |  |
| Overcast | Cool  | Normal   | True  | Yes  | Sunny   | Mild  | High     | False |  |
| Sunny    | Cool  | Normal   | False | Yes  | Rainy   | Mild  | High     | True  |  |
| Rainy    | Mild  | Normal   | False | Yes  |         |       |          |       |  |
| Sunny    | Mild  | Normal   | True  | Yes  |         |       |          |       |  |
| Overcast | Mild  | High     | True  | Yes  |         |       |          |       |  |
| Overcast | Hot   | Normal   | False | Yes  |         |       |          |       |  |

39







### Summary

- · Bayesian inference
  - Get the posterior probability of causes (models) based on gathered evidence, and infer the cause
- · Difficulty
  - (if complex models are to be used) the number of data to be used to determine the parameters is large
- Naïve Bayes
  - A good solution to address it
  - Assumes attributes (to describe samples) are conditionally independent
  - May not be true but works.
  - Is not old fashoned

50

#### An exercise

- Suppose you are given a training dataset at the left and as an unseen sample a sample at the right is given. Use Naïve Bayes and bet "go skiing" value
- The dataset is in: http://www.sakurai.comp.ae.keio.ac.jp/classes/ IntInfProc-class/2017/04PlaySkii.zip

| snow    | weather | season | physical<br>condition | go skiing |
|---------|---------|--------|-----------------------|-----------|
| sticky  | foggy   | low    | rested                | no        |
| fresh   | sunny   | low    | rested                | yes       |
| fresh   | foggy   | low    | rested                | yes       |
| frosted | foggy   | low    | injured               | no        |
| fresh   | sunny   | low    | injured               | no        |
| sticky  | sunny   | low    | rested                | yes       |
| fresh   | foggy   | low    | rested                | yes       |
| sticky  | sunny   | mid    | rested                | yes       |
| fresh   | sunny   | high   | rested                | yes       |
| fresh   | windy   | low    | rested                | yes       |
| frosted | foggy   | mid    | rested                | no        |
| fresh   | windy   | low    | rested                | yes       |
| fresh   | sunny   | mid    | rested                | yes       |
| frosted | windy   | high   | tired                 | no        |



49