Contents

－MAP and MLE
－＂Frequency＝0＂problem
－Parameter estimation of binomial distribution
－Laplace correction
－In R

MAP estimation

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

When data is given，a hypothesis with highest posterior is the one to be selected．
Maximum a posteriori hypothesis $h_{\text {MAP }}$ ：

$$
\begin{aligned}
h_{M A P} & =\underset{h \in H}{\arg \max } P(h \mid D) \\
& =\underset{h \in H}{\arg \max } \frac{P(D \mid h) P(h)}{P(D)} \\
& =\underset{h \in H}{\arg \max } P(D \mid h) P(h)
\end{aligned}
$$

Contents

－MAP and MLE

－＂Frequency＝0＂problem
－Parameter estimation of binomial distribution
－Laplace correction
－In R

ML estimation

Maximum Likelihood hypothesis $h_{M L}$ ：

$$
h_{M L}=\underset{h \in H}{\operatorname{argmax}} P(D \mid h)
$$

which is equivalent to MAP with $P\left(h_{i}\right)=P\left(h_{j}\right) \forall i, j$

$$
h_{M A P}=\underset{h \in H}{\operatorname{argmax}} P(D \mid h) P(h)
$$

Laplace correction in a nutshell

Frequency＝0 problem

－What will happen if，for a class and an $\quad P($ Play＝yes $\mid E)$
What will happen if，for a class and an attribute value，there is no ＂ccurrence？（e．g．for＂Play＝No＂and Outlook＝Overcast＂）

Prob（Outlook＝Overcast｜Play＝no） is equal to 0 ！！
－Therefore its posterior probability $=0$ －Although all the other attributes say the sample is very likely，it is 0 ．
－A remedy：
－Add 1 to the frequency of all combinations of class and attribute combinations of class and attribute values（called Laplace correction）；
－Note that the denominators（see th by k（\＃of class values）
$=\mathrm{P}($ Outlook $=$ Sunny \mid Play＝yes $)$＊
$\mathrm{P}($ Temp $=$ Cool \mid Play＝yes）＊ P （Humidity＝High｜Play＝yes）＊ P （Windy＝True \mid Play＝yes）＊ P（play＝yes）／P（E）
would be

```
# of values o,
'Outlook'
```

$=((2+1) /(9+3)) *((3+1) /(9+3))$＊ $((3+1) /(9+2)) *((3+1) /(9+2)) *(9 / 14) /$ P（E）
$=0.007 / \mathrm{P}(\mathrm{E})$

Contents

- MAP and MLE
- "Frequency=0" problem
- Parameter estimation of binomial distribution
- Laplace correction
$-\ln \mathrm{R}$
addendum

Estimation of parameters (binomial distribution)

 Head

 Tail

- Toss a thumbtack in the air and it will land with the point up (H: head) or not up (T : tail).
- Set $\theta=P(H)$ which is unknown

Estimation problem:

From the results of tossing $D=x[1], x[2], \ldots, x[M]$, we want to estimate the probability $P(H)=\theta$ and $P(T)=1-\theta$.

Likelihood function

- How to measure goodness of estimation of θ ?

Use the likelihood of a hypothesis "assuming θ to be true, the data were generated by the hypothesis"

$$
L(\theta: D)=P(D \mid \theta)=\prod_{m} P(x[m] \mid \theta)
$$

- E.g., for a sequence $\mathrm{H}, \mathrm{T}, \mathrm{T}, \mathrm{H}, \mathrm{H}$:

$L(\theta: D)=\theta \cdot(1-\theta) \cdot(1-\theta) \cdot \theta \cdot \theta$

Derivation: starts from "is MLE best?"

- What if the number of observations is very large?
- Same principle is applied. But, there may be many unobserved attribute values. Should the estimate of probability be 0 ? Could we think that we happen to have no occurrences? ...
- Suppose that the variable X take 20 values with equal probability and we have 30 samples. Then there may be many values unobserved.

```
> set.seed(100)
> < <- sample(1:20, 30, replace=T)
> table(x)
x
2
1
```


MLE: Maximum likelihood estimator

- The method of :

Get a parameter value that maximizes its likelihood

$\hat{\theta}=\frac{N_{H}}{N_{H}+N_{T}}$ We may claim that this is the best we can.

MAP solution

- We suppose that "parameters distribute."
- Bayesian way.
- Maximize, not $P(D \mid \theta)$, but $P(D \mid \theta) P(\theta)$
- By using Bayes theorem:

$$
\begin{aligned}
P(\theta \mid D) & =\frac{P(D \mid \theta) P(\theta)}{P(D)} \\
P\left(\theta \mid N_{H}, N_{T}\right) & =\frac{\theta^{N_{H}}(1-\theta)^{N_{T}} P(\theta)}{P(D)} \quad \text { i.e., MAP rather than MLE }
\end{aligned}
$$

- We will take $\hat{\theta}$ that maximize the above probability.
- In this case, in general, $\theta=0$ is not necessarily a solution even if $N_{H}=0$.

Prior distribution?

- Beta distribution as a prior:
$P_{B}(x ; \alpha, \beta)=\mathrm{x}^{\alpha-1}(1-\mathrm{x})^{\beta-1} / B(\alpha, \beta)$
- Since
$\int \theta^{N_{H}}(1-\theta)^{N_{T}} P_{B}(\theta ; \alpha, \beta) d \theta=\theta^{N_{H}+\alpha}(1-\theta)^{N_{T}+\beta}$,
$\hat{\theta}=\left(N_{H}+\alpha\right) /\left(\left(N_{H}+\alpha\right)+\left(N_{T}+\beta\right)\right)$
is obtained.
- Substituting 1's for α and β, we get Laplace correction.

$$
\hat{\theta}=\left(N_{H}+1\right) /\left(\left(N_{H}+1\right)+\left(N_{T}+1\right)\right)
$$

Laplace correction

- What happens when $N_{H}=0$?
- Laplace correction is an answer:
- Suppose you had observed, before real observations, two tossing: one head and one tail landed.
- then the estimation is:

$$
\hat{\theta}=\left(N_{H}+1\right) /\left(\left(N_{H}+1\right)+\left(N_{T}+1\right)\right)
$$

Contents

- MAP and MLE
- "Frequency=0" problem
- Parameter estimation of binomial distribution
- Laplace correction
- In R

Extension of Laplace correction

- It is obvious that we can extend Laplace correction as

$$
\hat{\theta}=\left(N_{H}+\alpha\right) /\left(\left(N_{H}+\alpha\right)+\left(N_{T}+\beta\right)\right)
$$

- We can assign $1 / 2,1,2, .$. to α and β and/or different values to them.
- There are no theories some of which is better than the others.

Before/after Laplace correction

Contents

- MAP and MLE

- "Frequency=0" problem
- Parameter estimation of binomial distribution
- Laplace correction
- In R

Laplace correction: in R

m <- naiveBayes(xy[,-5], xy[,5],|aplace=1)

Laplace correction: in R

Locate differences. Too easy to do.

```
> II brary(e1071)
> xy<-read.csv("PlayTennis.csv", header=TRUE)
> m<<. naiveBayes(xy[,.5], xy[, 5])
lurnorer
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = xy[, 5], y = xy[, 5])
```

