SVM (1): Support vector machine

Akito Sakurai

Complex boundaries

Another intuitive interpretation

- Replace a decision boundary by a strip with nonzero width. The narrower the width is, the more easily the point on the other side could jump in

Support vector machine (SVM)

- SVM maximizes the margin around the separating hyperplane.
- called "large margin classifier"
- Decision function is determined by its support vector which are in the training dataset.
- Formulated as quadratic programming

- Considered to work well for wide variety of problems

Large margin classifiers

Margin: formulation

- w: normal vector to the decision boundarn
- x_{i} : i-th sample
- y_{i} : class to belong (+1 or -1) Note: not $1 / 0$
- classifier: $\quad \operatorname{sign}\left(w^{\top} x_{i}+b\right)$
- Functional Margin of $x_{i}: \quad y_{i}\left(w^{\top} x_{i}+b\right)$
- Clearly when w gets longer, margin gets larger
(Functional margin of a dataset is the maximum of them)

Geometrical margin

- Distance from a sample to the hyperplane $r=\frac{\mathbf{w}^{T} \mathbf{x}+b}{\|\mathbf{w}\|}$
- Samples nearest to the hyperplane are support vectors.
- Margin ρ of separating hyperplane designates how far the support vectors of different classes are separated.

Linear SVM

Hyperplane
$w^{\top} x+b=0$

- Constraints:

$$
\min _{\mathrm{i}=1, \ldots, n}\left|w^{\top} x_{i}+b\right|=1
$$

- Rewritten to:

$$
w^{\top}\left(x_{a}-x_{b}\right)=2
$$

$$
\rho=\left\|x_{a}-x_{b}\right\|_{2}=2 /\|w\|_{2}
$$

Linear SVM methematics

- Suppose that all the points are positioned further than hyperplane by function value 1 . Then, the following two constraints are obtained from the training dataset $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$:

$$
\begin{array}{ll}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b \geq 1 & \text { if } y_{i}=1 \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b \leq-1 & \text { if } y_{i}=-1
\end{array}
$$

- For the support vectors, the above inequalities become equalities; Then, the margin is $\rho=2 /\|\mathbf{w}\|$ because the distance from each sample to the hyperplane is

$$
r=\frac{\mathbf{w}^{T} \mathbf{x}+b}{\|\mathbf{w}\|}
$$

Assumption: The function (representing hyperplane) takes 1 and -1 on the marginal hyperplane

Linear SVM

- Formulated as the following quadratic programming:
Find \mathbf{w} and b such that:
$\quad \rho=\frac{2}{\|\mathbf{w}\|}$ is the maximal, and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$
$\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b \geq 1$ if $y_{i}=1 ; \mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b \leq-1 \quad$ if $y_{i}=-1$
- A better formulation $(\min \|\mathbf{w}\|=\max 1 /\|\mathbf{w}\|)$:

Find \mathbf{w} and b such that:
$\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is the minimal, and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$ $y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1$

