

function is the

identity function, $y = \sum_{i=1}^{n} w_i x_i$ i.e.

(x is a vector)

=-x

$$\begin{split} \Delta W &= \alpha \left(-\frac{\partial E}{\partial W} \right) & \text{where } E(w) = \\ W \leftarrow W + \Delta W & \sum_{i} (\varphi(x_i; w) - t_i)^2 \end{split}$$

where α is called a learning rate which should be appropriately defined.

A bit more

$$W \leftarrow W + \alpha \left(-\frac{\partial E}{\partial W} \right)$$
 and $\frac{\partial E}{\partial W} = -2(t-y)x$

Therefore, if we rewrite 2α as α ,

$$W \leftarrow W + \Delta W$$
 where $\Delta W = \alpha (t - y)x$
where $y = \sum_{i=1}^{n} w_i x_i$ is assumed

7

Comparison with Perceptron learning algorithm

•	If you look at the resulted rule, rule:		it looks like the perceptron learning $\int r = \int t dt = 1$		
	$W \leftarrow W + \Delta W$	where	$\Delta W = \begin{cases} x \\ -x \end{cases}$	if $t \neq y$ and $t = -1$	
			0	if $t = y$	
	which obtained by	which obtained by setting $\alpha=1, t=\pm 1, y=\pm 1$ in the steepest descent:			
	$W \leftarrow W + \Delta W$	where	$\Delta W = \alpha(t$	-y)x	

- In other word, it looks like proving the validity of perceptron learning
- In other word, it looks like proving the validity of perceptron learning algorithm
- But not, because the threshold function is not the identity function and is not differentiable 8

For any activation function

$$E = (t - y)^{2}$$

$$y = f(y_{in}), y_{in} = \sum_{i=1}^{n} w_{i}x_{i}$$

$$\frac{\partial E}{\partial W} = 2(t - y)\frac{\partial(t - y)}{\partial W}$$

$$= -2(t - y)f'(y_{in})x$$

$$\frac{\partial(t - y)}{\partial W} = -\frac{\partial y}{\partial W}$$

$$= -\frac{\partial f(y_{in})}{\partial y_{in}}$$

$$= -\frac{\partial f(y_{in})}{\partial W}$$

$$= -f'(y_{in})\frac{\partial(x_{i})}{\partial W}$$

$$= -f'(y_{in})x_{i}$$

In short

$$W \leftarrow W + \alpha \left(-\frac{\partial E}{\partial W} \right)$$
 where $\frac{\partial E}{\partial W} = -2(t-y)f'(y_{in})x$

Rewriting 2α as α ,

$$W \leftarrow W + \Delta W$$
 where $\Delta W = \alpha (t - y) f'(y_{in}) x$

10

Is this correct?

Yes, it is. If the learning rate α is decreasing to 0 with appropriate speed, by iteratively applying the rule:

$$W \leftarrow W + \Delta W$$
 where $\Delta W = \alpha \sum_{s} (t_s - y_s) f'(y_{in,s}) x_s$
we can get at a (local) minimum of $E = \sum_{s} (t_s - y_s)^2$

- Then the batch mode is good enough?
- The story is not so simple.
- In reality, it is known empirically that the online mode minimization will give us smaller E.
 Why?
- It is also known that mini-batch is better when there are many samples
 ¹²

By the way

- · We have considered a learning rule when a sample is given.
- But this is not appropriate
- Because we have to consider the error or loss which is not just of a sample but of a set of all the samples.
- Because if we decrease an error caused by a single sample x₁ it may increase an error caused by another sample x₂ and may increase the total sum of errors.
- Therefore we have to consider

$$E = \sum_{s} (t_s - y_s)^2 \text{ but not } E = (t - y)^2$$

and

 $W \leftarrow W + \Delta W$ where $\Delta W = \alpha \sum (t_s - y_s) f'(y_{in_s}) x_s$

(this will be called "batch mode" (vs. online mode))

- The gradient is the steepest ascent.
- Therefore

$$\Delta w_i^j = -\eta \cdot \frac{\partial E}{\partial w_i^j}(W)$$
$$w_i^{j,new} = w_i^j + \Delta w_i^j$$

is the method where η is a learning rate which should be determined carefully.

21

when the learning rate is small

when the learning rate is relatively large when the learning rate is large

22

 h^1

24

SGD for NN

- In processes of error-decreasing, there often exist of periods of very slow convergence.
 - It is called plateau
 - Why?
- There exists degeneracy in search space of weights where singular points of error function exist
 - Many occurrences of the same shape in the error function causes the singular points.
 - Current weight set passes close to the points.
- Many speeding up methods have been proposed.

31

