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The definition of the conditional probability

An example
（Mitchell Chap. 6.2）

When a patient was screaned with a cancer test, the 
result was positive.
Does this patient have really cancer ?
The test reports positive 98% when in fact the patient 
has cancer; negative 97% negative when the patient 
does not have cancer. 

Only 0.8% of whole population have cancer.
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P(+ | cancer) = .97

P(+ | cancer) =

=.0376

Cancer: 0.8%

Cancer: 99.2%

negative: 2%positive: 98%

negative: 97%positive: 3%

An example（Mitchell Exercise 6.1）

When a second test (statistically independent from the first one) was 
conducted, the result was positive. What is the posterior probability to 
be cancer?
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Basic Probability Formulas

P(A|B) P(B) = P(B|A) P(A)

P(A) + P(B)  P(AB)

P(B) =

P(AB) =

Theorem of total probability (if event Ai is 
mutually exclusive): 
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Product rule（definition of conditional prob.):

Sum rule:
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What Bayes theorem tells us
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P(h) = prior probability of a hypothesis h

P(D) = probability of a training dataset D 

P(h|D) = posterior probability of h when D is given

P(D|h) = probability of D when h is given

Note: conditional probability does not reflect any causal relations if any.

We can chose more plausible hypothesis h that could 
produce the dataset D

Note: Can we think of "probability of hypotheses" ?

Development of posterior probability
(when without noise)

P(h|D1,D2)

hypotheses

P(h)

hypotheses

P(h|D1)

hypotheses

Bayes Classifiers

Assumption: A training set consists of instances of different 
classes cj described as a conjunction of attribute values

Task: Classify a new instance d based on a conjunction of attribute 
values into one of the classes cj  C
Key idea: Assign the most probable class             using Bayes 
Theorem.
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Desirable Properties of Bayes Classifier

 Combines prior knowledge and observed data:
prior probability of a hypothesis multiplied with 
probability of the hypothesis given the training 
data

 Incremental: with each training example, the prior 
and the likelihood can be updated dynamically: 
flexible and robust to errors.

 Probabilistic hypothesis: outputs not only a 
classification, but a probability distribution over all 
classes
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Maximum A Posterior

 Based on Bayes Theorem, we can compute the 
Maximum A Posterior (MAP) hypothesis for the data

 We are interested in the best hypothesis in some 
space H given observed training data D.
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H: set of all hypothesis.

Note: We can drop P(D) as the probability of the data is constant 
(and independent of the hypothesis).
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Maximum Likelihood

 Now assume that all hypotheses are equally 
probable a priori, i.e., 
P(hi ) = P(hj ) for all hi, hj belonging to H.

 This corresponds to assuming a uniform prior. 
It simplifies computing the posterior (is it OK?):

 This hypothesis is called the maximum likelihood 
hypothesis.
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An interpretation of ML

 In the real world, prior distribution is believed 
to be unknown, incomputable, or non-existent
 For example, is there a prior distribution of words 

in some document? If it exists, it can vary 
depending on age, social background, population 
distribution, etc.

 If the prior does not exist, maximizing 
likelihood is a natural way to think of.

ML is equivalent to MAP when the hypotheses distribute uniformly,
i.e., equivalent to suppose that the prior is uniform.
Is this valid?
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The most probable class

 We have sought the most likely under 
samples D hypothesis（e.g.：hMAP）.

 What about the most likely (probable)
classification (class)?
 hMAP(x) is not most probable !

 In the following, what is the most probable class of 
x ?

 3 hypotheses: P(h1|D)=0.4, P(h2|D)=0.3, P(h3|D)=0.3

 A new sample: h1(x)=+, h2(x)=–, h3(x)= –
H1 H2 H3

Bayes optimal classifier
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Note: Bayes optimal classifier is not necessarily in H.

Note: Is it feasible? It looks to take long time to calculate.

Note: Some papers report that this works well, but in some cases we tried, 
the result was no better than MAP and ML. It is very interesting to know 
when it works and when it does not.

仮説1 仮説2 仮説3

An example (Mitchell Chap. 6.7)

P(h1 | D) = .4 P(  | h1) = 0 P( | h1) = 1
P(h2 | D) = .3 P(  | h2) = 1 P( | h2) = 0
P(h3 | D) = .3 P(  | h3) = 1 P( | h3) = 0
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Gibbs classifier

1. Select a hypothesis randomly according to
P(h|D) 

2. Classify a new example following the h

Good news: If a hypothesis is randomly 
sampled from P(h) ,

E[errorGibbs]  2E[errorBayesOptimal]

(See “Mitchell Machine Learning Chap. 6.8”)

Effective when there are so many hypothesis that a Bayes optimal is hard to 
calculate and we repeat the inferences
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Naïve Bayes classifier

 Since (although?) simple, it is wellknown
 More accurate than expected, although simple
 Fast as is expected, since simple

 Bayes Theorem + Assumption conditional 
independence
 The assumption hardly holds in the real world
 In the real world, though, it works well

 Successful applications: 
 Text classification,
 Diagnosis, and many others

Naïve Bayes is not a Bayesian

Difficulty in Bayes classifier
 Recall that for a set of attributes <a1,…,an> of 

x, to infer the class that x belongs

 Difficulty: Huge dataset is required to infer
P(a1…an|cj), since there are huge number of 
parameters (|Ai|) (for two value attributes, 
2n parameters for n attributes)
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Naïve Bayes classifier

 Naïve Bayes assumption: attributes are 
mutually independent when the class is 
given
 P(a1,…,an|cj) = P(a1|cj) P(a2|cj) … P(an|cj)

 conditional independence (given the class)
 Reduces the number of parameters to infer: 

|Ai| (=O(2n))   |Ai| (=O(n))

 Under this assumption, cMAP becomes
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Naïve Bayes: an Algorithm

Training (for a set of instances)
Estimate the probability that an instance x 

belongs to a class cj
P^ (cj) = P(cj) 's estimator

Estimate the probability that the i –th attribute 
value of an instance x belonging to the class cj
is ai .

P^ (ai|cj) =  P(ai|cj) 's estimator

Class(x)
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Naïve Bayes: Estimation

 How can we estimate P(cj) and P(ai|cj) ?
 A standard method that statistics tells us

 Use frequency of the samples
 P(c) is estimated by count(c) / N

 P(A|B) is estimated by count(A  B) / count(B)

 Example: 100 samples. 70 + and 30 –
 P(+)=0.7 and P(-)=0.3
 Among 70 positives, in 35  a1=SUNNY
 P(a1=SUNNY|+)=0.5

Example: Play Tennis 
Outlook Temp. Humidity Windy Play

Sunny Hot High No No

Sunny Hot High Yes No

Overcast Hot High No Yes

Rainy Mild High No Yes

Rainy Cool Normal No Yes

Rainy Cool Normal Yes No

Overcast Cool Normal Yes Yes

Sunny Mild High No No

Sunny Cool Normal No Yes

Rainy Mild Normal No Yes

Sunny Mild Normal Yes Yes

Overcast Mild High Yes Yes

Overcast Hot Normal No Yes

Rainy Mild High Yes No

From Tom Mitchell's Machine Learning 

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

Please infer if on the following day 
they played tennis or not

There are two classes: to play tennis 
(Play=Yes) and not to play tennis 
(Play=No)

26

A solution
 For the PlayTennis , and a new instance

<Outlook=sunny, Temp=cool, Humid=high, Windy=true>

 We want to calculate:


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Divided samples into the classes
Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

28

Procedure

Count and infer parameters

Sunny 2 Hot 2 High 3 False 6

Overcast 4 Mild 4 Normal 6 True 3

Rainy 3 Cool 3

sum 9 sum 9 sum 9 sum 9

Sunny 2/9 Hot 2/9 High 3/9 False 6/9

Overcast 4/9 Mild 4/9 Normal 6/9 True 3/9

Rainy 3/9 Cool 3/9

probs

counts

A1=Outlook A2=Temperature A3=Humidity A4=Windy Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

Sunny 3 Hot 2 High 4 False 2

Overcast 0 Mild 2 Normal 1 True 3

Rainy 2 Cool 1

sum 5 sum 5 sum 5 sum 5

Sunny 3/5 Hot 2/5 High 4/5 False 2/5

Overcast 0/5 Mild 2/5 Normal 1/5 True 3/5

Rainy 2/5 Cool 1/5

A3=Humidity A4=Windy

probs

counts

A1=Outlook A2=Temperature
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Procedure

Combine them to make one table

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5

Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3

Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14

Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5

Rainy 3/9 2/5 Cool 3/9 1/5

m=PlayA1=Outlook A2=Temperature A3=Humidity A4=Windy

Outlook Temp. Humidity Windy Play

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Overcast Cool Normal True Yes

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Outlook Temp. Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Rainy Cool Normal True No

Sunny Mild High False No

Rainy Mild High True No

p(m) should not be forgotten

30

Procedure



6

Inference

p(Play=yes | x )   
= p(Outlook=Sunny | Play=yes) 

* p(Temp=Cool | Play=yes) 
* p(Humidity=High | Play=yes) 
* p(Windy=True | Play=yes) 
* p(Play=yes)  / p(x) 

= (2/9) * (3/9) * (3/9) * (3/9) 
*(9/14) / p(x) 

= 0.0053 / p(x) 

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?
A new unseen x
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p(Play=no | x )   
= p(Outlook=Sunny | Play=no) 

* p(Temp=Cool | Play=no) 
* p(Humidity=High | Play=no) 
* p(Windy=True | Play=no) 
* p(Play=no)  / p(x) 

= (3/5) * (1/5) * (4/5) * (3/5)  
*(5/14) / p(x)

= 0.0206 / p(x)

Note: It is clear that you do need to consider 1/p(x) , which is common among 
all alternatives. 

In other words p(Play=yes | x ) < p(Play=no | x ) 
i.e., "they did not (will not) play tennis"
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Procedure

Naïve Bayes: Conditional independence

 Is it necessary?
 What happens if the assumption does not hold?

 i.e. if P(a1,…,an|cj)  P(a1|cj) P(a2|cj)…P(an|cj)

 If the following (weak) condition holds, the 
prediction is the same as Bayes classifier:

 But, the probability obtained in the prediction 
happens to be unrealistically close to 0 or 1
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Naïve Bayes: a Problem

 What happens if an attribute value ai is not 
observed for a class cj ?
 Estimator of P(ai|cj)=0 because count(ai  cj) = 0
 Big impacts: if this is 0, any products are 0 !

 A solution: use Laplace correction.


 n : # of training samples for c = cj

 nc : # of training samples for c = cj and a = aj

 p : prior probability (estimator) P^ (ai|cj) (uniform 
distribution is common)

 m : pseudo-count (commonly the number of attribute values)

mn
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caP c
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

)|(ˆ

m=1 is another choice which works better in many cases, too

Note: Laplace correction

 (in parameter estimations from frequency)
supposing a prior distribution for the 
parameter, obtain a MAP estimator.

 Beta distribution is the prior: 
f(x;,)=x1(1x)1/B(,) 

 The posterior mean of the parameter is 
the Laplace correction. If the likelihood is 
a result of a Bernoulli trial: 
෠ߠ ൌ ݊଴ ൅ ߙ ݊଴ ൅ ݊ଵ ൅ ߙ ൅ ⁄ߚ

Note: smoothing
 In an estimation of statistical model, assigning a small probability to 

events that did not occur is called smoothing

 In natural language processing, frequencies of a word or a sequence of 
n words (n-gram) are often used. When n grows, n-gram becomes 
scarce, i.e., many n-grams do not occur. To solve the problem many 
techniques were invented.
 Laplace smoothing (additive smoothing)
 Linear interpolation
 Good-Turing smoothing
 Katz smoothing
 Church-Gale smoothing
 Witten-Bell smoothing
 Kneser-Ney smoothing
 ….
 Hierarchical Pitman-Yor language model

http://www.jaist.ac.jp/project/NLP_Portal/doc/glossary/index.html
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Text classification

 Texts classification:
 Classifying documents (mail, news, web pages, etc. or a 

paragraph, a sentence, etc.)
 Classifying e-mails into spam or not.
 Classifying blogs into splog or not
 Classifying news into interesting or not (to a person)
 Classifying reviews of a product into groups of good reputation or 

not
 Classifying reviews into trustable or not
 Classifying open ended questions for questionnaire surveys
 Classifying Q and A's at a call-center.

 Naïve Bayes works well
 How to apply Naïve Bayes ?
 Point: How to represent a sample (i.e. document), attributes?
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Document representation
 Bag-of-words

 Document as a vector of frequency of words in it
 "Bag" implies discarding positions where the word occurs, and
 disregarding the sequences (contexts) of a word
 i.e. if keio, gijuku, and university are words, there would be no 

difference between keio gijuku university, keio university giju, and 
gijuku keio university

 "what are words" is important, which should not differ among 
documents.

 In English, "dog" and "dogs" should be treated as the same
 Ignore words not relevant to classification

 In Japanese, particles such as ha, ga, mo, ya, etc are the ones
 In English, prepositions
 The words that have syntactic function but have no meaning are 

called functional words.
 Ignore words that are close to noise

 Very low frequent words such as appearing just once.

Document representation (cntd.)

 Representation itself is like naïve Bayes 
 Because representation is not inference, it is not naïve Bayes, 

but it really looks like naïve Bayes.

 Probability of the occurrence of a document is formulated in 
naïve Bayes fashion.

 Suppose that for each class of documents, the probability that 
a specific word occurs in a document is known as P(w1 |cj),
P(w2 |cj), …, P(wn |cj) . If w1, w2,…, wn are the words that occur 
in a document, then the probability that the document occurs is

P(doc|cj)=P(w1 |cj)
TF(w1) P(w2 |cj)

TF(w2)… P(wn |cj)
TF(wn)

where TF(w) is the term frequency of a word w in a document doc

出現確率をこう書けば naïve Bayes といえよう

Document classification by 
Naïve Bayes

 For a document doc,

where TF(wk,doc) = frequency of wk in doc and Voc is a set of all the words 
that we consider 

 To represent word frequencies in a document, we need Laplace correction.  
The following estimator is used;  where nj=the number of words in a class 
cj , nk,j=the number of occurrences of word wk in class cj .
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Twenty News Groups (Joachims 1996)

 1000 training documents in each group

 Assign new documents to one of newsgroups

comp.graphics
comp.os.ms-windows.misc 
comp.sys.ibm.pc.hardware

comp.sys.mac.hardware
comp.windows.x & rec.sport.hockey

misc.forsale
rec.autos

rec.motorcycles
rec.sport.baseball
rec.sport.hockey

alt.atheism
soc.religion.christian

talk.religion.misc
talk.politics.mideast
talk.politics.misc 
talk.politics.guns

sci.space
sci.crypt

sci.electronics
sci.med

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. 
In Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, 1997, pp.143--151.

Twenty News Groups (Joachims 1996)

 Naive Bayes: 89% accuracy of classification
 Highly frequent 100 word (the and of …) are deleted

 The words such as functional words, words relatively useless 
for classification are categorized as stop words and are deleted

 The words occurring less than 3 times are deleted
 The words remained: 38,500 語

Accuracy vs. # of  training data (1/3 is reserved for test)

Note: the accuracy is overly high.. In every 
text in 20 Newsgroups has a "subject" field 
which is very helpful for classification. 
Although the subject field is now deleted, in 
the previous works the field might be utilized.

Summary: Bayes inference and NB 

 Bayes inference:
 ML: maximization of P(D|h)
 MAP: maximization of P(h|D)  P(D|h) P(h)
 Posterior mean: 
 Bayes optimal: P(c|D) =  P(c|h)P(h|D) dh

 Supposing that the hypothesis distributes

 Naive Bayes: unrealistic assumption but 
works well in real world
 Test classification is a good example
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Exercise
 Apply Naïve Bayes to the following training data (left) and 

the test data (right) to find out the class label (skiing).
Note: Apply Laplace correction.

43

snow weather season physical condition go skiing
sticky foggy low rested no
fresh sunny low injured no
fresh sunny low rested yes
fresh sunny high rested yes
fresh sunny mid rested yes
frosted windy high tired no
sticky sunny low rested yes
frosted foggy mid rested no
fresh windy low rested yes
fresh windy low rested yes
fresh foggy low rested yes
fresh foggy low rested yes
sticky sunny mid rested yes
frosted foggy low injured no

snow weather season
physical
condition

go skiing

sticky windy high tired ?

Appendix

Bayes optimal classifier

 Suppose that we observed n samples D={x1,…,xn } 
sampled from a probability distribution P(X;θ) with a 
parameter θ. We want to infer how probable y is 
according to D.

 Method 1: Infer the parameter θ and then use P(X;θ)
 MLE (most likely)
 MAP (most a posteriori)
 posterior mean

 Method 2: without inferring the parameter θ
ܲ ܻ, ߠ ܦ ൌ ܲ ܦ,ܻ ߠ ܲሺߠሻ/ܲሺܦሻ

ܲ ܻ ܦ ൌ නܲ ܻ, ܦ ߠ ܲሺߠሻ/ܲ ܦ ߠ݀

ெ௅ாߠ ൌ argmaxܲ ܦ ߠ

ெ஺௉ߠ ൌ argmaxܲ ܦ ߠ ܲሺߠሻ

መߠ ൌ නܲߠ ߠ ܦ ߠ݀ ൌ නܲߠ ܦ ߠ ܲሺߠሻ/ܲሺܦሻ݀ߠ

Basic ideas of Bayesian inference

 Bayesian view is that we can measure uncertainty, 
even if there are not a lot of examples
 What is the probability that a debut team will win the 

championship league this year?
 Cannot do this with a frequentist approach

 What is the probability that a newly minted particular coin 
will come up as heads?

 Without much data we utilize our initial belief as the prior

 But as more data comes available we transfer more 
of our belief to the data (likelihood)

 With all the data, we do not consider the prior at all
 Belief is coded as a probability distribution 
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An example: basic ideas
 Assume that we want to infer the mean μ of a 

random variable x where the variance σ2 is known 
and we have not yet seen any data

 P(μ|D,σ2) = P(D|μ,σ2)P(μ)/P(D) ∝ P(D|μ,σ2)P(μ)
 A Bayesian would want to represent the prior μ0

and the likelihood μ as parameterized distributions 
(e.g. Gaussian, multinomial, uniform, etc.)

 Let's assume a Gaussian just here
 Since the prior is a Gaussian we would like to 

multiply it by whatever the distribution of the 
likelihood is in order to get a posterior which is also 
a parameterized distribution specifically Gaussian
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Conjugate Priors

 P(μ|D, σ0
2) = P(D|μ)P(μ)/P(D) ∝ P(D|μ)P(μ)

 If the posterior is the same distribution as the prior 
after the multiplication, then we say the prior and 
posterior are conjugate distributions and the prior is 
a conjugate prior for the likelihood

 In the case of a known variance and a Gaussian 
prior we can use a Gaussian likelihood and the 
product (posterior) will also be a Gaussian

 If the likelihood is multinomial then we would need 
to use a Dirchlet prior and the posterior would be a 
Dirchlet
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Discrete Conjugate Distributions

From Wikipedia

Continuous Conjugate Distribution (1)

Wikipediaより

Continuous Conjugate Distribution (2)

From Wikipedia From Wikipedia

Continuous Conjugate Distribution (3)


