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情報意味論（5） パーセプトロン

理工学部管理工学科

櫻井彰人

神経回路網
ニューラルネットワーク

動物の神経・神経回路にヒントを得る

人工の神経素子（neuron）とそのネットワーク

多くの場合はソフトウェアで実現

適応する、学習する

連続値が扱える

今回

概要

パーセプトロン

McCullogh-Pitts モデル(1943)
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階層型（フィードフォワード）

相互結合 再帰型（リカレント）

シグモイド素子
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基本的な計算
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ニューラルネットの原理

一側面：関数近似・回帰である

例：１入力・１出力とする
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近似定理

ニューラルネットワークの中間素子数を必
要なだけ用意できるなら、任意の滑らかな
関数を任意の精度で近似することができる
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必要であれば何個でも使う

http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html

音声認識

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-3/www/ml.html

領域と境界面

構造 境界面の形 例１
対XOR問題

例２ 例３

中間層なし

中間層２素子

中間層多素子

超平面

２超平面、そ
れらを滑らか
にしたもの

任意（但し、素
子数に依存）
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http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-3/www/ml.html
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連想

(A,a), (B,b), (C,c),… というデータを記憶し、
(A,?) と聞かれたら ?=a と答える

変形した・ノイズの乗った図形から元の図を復元
する。

http://www.physics.syr.edu/courses/modules/MM/sim/hopfield.html

Hopfieldネットワーク

相互結合型。通常、時を刻みながら、過去
の自分達の値を入力として、次の出力（こ
れが次の入力となる）を決める。

X0 X1 XN-2 XN-1

X'0 X'1 X'N-2 X'N-1

µ0 µ1 µN-2 µN-1

Kohonenマップ

説明省略

http://rfhs8012.fh-regensburg.de/~saj39122/jfroehl/diplom/e-sample.html

多義語: パーセプトロン

パーセプトロン: 同じ言葉で別のものを指している

線型閾値素子: 次のスライド

元祖パーセプトロン: 下記. これが本当 !

シグモイド素子: 次回

シグモイド素子のネットワーク: 多層パーセプトロンと呼ばれる. 次回

線型閾値素子のネットワーク: 多層パーセプトロン. 稀

本講義では, 習慣に従い「間違った」用法に従う

元祖パーセプトロン

Rosenblatt 1962

Minsky and Papert 1969

http://www.physics.syr.edu/courses/modules/MM/sim/hopfield.html
http://rfhs8012.fh-regensburg.de/~saj39122/jfroehl/diplom/e-sample.html
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パーセプトロン Perceptron: 単一ニューロンのモデル

別名 線型閾値素子 Linear Threshold Unit (LTU) or Linear Threshold Gate (LTG)

素子への純入力 net input: 線型関数

素子の出力: 純入力に閾値関数 threshold function を施したもの (閾値 threshold θ = w0)

純入力に施して出力を得る関数を 活性化関数 activation function と呼ぶ

パーセプトロンネットワーク Perceptron Networks
パーセプトロン同士が 荷重つき結合 weighted links wi によって繋がっている

Multi-Layer Perceptron (MLP): 下の方

∑
=

=
n

0i
ii xwnet

パーセプトロン Perceptron

x1

x2

xn

w1

w2

wn

Σ

x0 = 1
w0

∑
=

n

0i
ii xw

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧
>

=
∑
=

otherwise  1-

0 if  1 i

n

0i
i

n21

xw
xxxo ,, K

( ) ( )
⎩
⎨
⎧ >⋅

==
otherwise  1-

0 if  1
: Vector

xw
w ,xsgnxo  

rr
rrr

表記

パーセプトロンの決定境界

パーセプトロン: 重要な関数がいくつも簡単に表現できる

論理関数 (McCulloch and Pitts, 1943)

e.g., 簡単な荷重で AND(x1, x2),    OR(x1, x2),    NOT(x)

表現できない関数もある

e.g., 線型分離可能でないもの

解: パーセプトロンのネットワーク

Example A
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パーセプトロン学習アルゴリズム

学習規則 ≡ 訓練規則 training Rule
教師付き学習に特有の話ではない

文脈: モデルの更新

Hebbの学習則 Hebbian Learning Rule (Hebb, 1949)
アイデア: もし２個の素子が両方とも active (“firing”)であれば, 結合荷重は増加する

wij = wij + r oi oj , 但し r は学習係数 learning rate で、定数である

神経生理学的に, ほぼ, 指示されている

パーセプトロン学習アルゴリズム Perceptron Learning Rule (Rosenblatt, 1959)
アイデア: 各入力ベクトルに対して出力値が与えられているなら, 荷重を漸進的に更新することによ

り, 当該出力値が出力できるようになる

２値出力 (Bool値, Boolean-valued) を仮定; 単一パーセプトロン素子

但し t = c(x) は目標出力値, o はパーセプトロンの現在の出力値, r は学習係数, 正定数であれば

何でも良い. 1でよいので、実は、パーセプトロン学習アルゴリズムでは, r は不要

D が線型分離可能 linearly separable であれば, 収束する. r が十分小さいことを条件とする説明も

あるがそれは誤り
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パーセプトロン学習アルゴリズム

単純な勾配降下 Gradient Descent アルゴリズムである

このアイデアは, 適当な表現を用いれば, 概念学習にも記号学習にも適用可能

アルゴリズム Train-Perceptron (D ≡ {<x, t(x) ≡ c(x)>})
荷重 wi をランダム値に初期化する // パーセプトロン時は0に初期化してもよい

WHILE 正しい出力をしない事例がある DO

FOR それぞれの事例 x ∈ D
現在の出力 o(x) を計算

FOR i = 1 to n
wi ← wi + r(t - o)xi // perceptron learning rule. r is any positive #

パーセプトロン学習可能性

復習: h ∈ H のときのみ学習可能 - i.e., 線型分離可能 linearly separable (LS) functions

Minsky and Papert (1969) Perceptrons : 元祖パーセプトロンの表現・学習の限界を示した

• 注: 素子一個では parity (n-変数 XOR: x1 ⊕ x2 ⊕… ⊕ xn) 関数が表現できない, というのは既

知

• e.g., 画像の symmetry, connectedness は（元祖パーセプトロンで）表現できない

• “Perceptrons” のせいで ANN 研究が10年近く遅れたといわれもするが、どこまで真実か。
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線型分離

Linearly Separable (LS)
Data Set
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定義

f(x) = 1 if w1x1 + w2x2 + … + wnxn ≥ θ, 0 otherwise

θ: 閾値

線型分離可能性

注: D が線型分離可能だからといって, 
真の概念 c(x) が線型分離可能とは限らない

選言 disjunction: c(x) = x1’ ∨ x2’ ∨ … ∨ xm’

m of n: c(x) = at least 3 of (x1’ , x2’, …, xm’ )

排他的 exclusive OR (XOR): c(x) = x1 ⊕ x2

一般の DNF: c(x) = T1 ∨ T2 ∨ …∨ Tm; Ti  = l1 ∧ l1 ∧ … ∧ lk

表現の変換

線型分離可能でない問題を線型分離可能な問題に変換できるか?

それは意味のあることなのか?  現実的なのか?

現実問題の重要な部分を占めるのか?

パーセプトロン学習の収束

パーセプトロン学習の収束定理

主張: もし訓練データと consistent な荷重集合があれば (i.e., データが線型分離可能なら), 
パーセプトロン学習アルゴリズムは収束する

証明: 探索空間が限界のある順序をなしている (“楔の幅” が厳密に減少していく) – 参照

Minsky and Papert, 11.2-11.3

注意 1: 収束までの平均時間は?

注意 2: もし線型分離可能でなければどうなるのか?

パーセプトロン循環定理

主張: 訓練データが線型分離可能でなければ パーセプトロン学習アルゴリズムにより得られる

荷重ベクトルは、ある有界集合内に留まる. 荷重が整数ベクトルなら, 有限集合内に留まる.

証明: もし十分に絶対値が大きい荷重ベクトルから始めると, 絶対値は殆ど大きくなれないこと

が示せる; 訓練事例の次元 n の数学的帰納法による – Minsky and Papert, 11.10

よりロバストに, またより表現力を上げるには?
目的 1: もっとも良い近似を発見するアルゴリズムの開発

目的 2: 表現の制約を超える新しいアーキテクチャの開発


