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情報意味論（8） Boosting

慶應義塾大学理工学部

櫻井 彰人

競馬でもうけるには？

予想屋（ではなく専門家に）訊く

仮定:
どの専門家も、正確な法則は答えられない

けれども、いくつかのレース結果をみれば、ラ
ンダムよりはましな、法則を教えてくれる

儲かるか？

アイデア

専門家に経験則を聞く

経験則が失敗する事例を集める (困難事例)
この困難事例について、専門家の意見を聞く

そして…

こうして得られた経験則をすべて統合する

実は、専門家でなくても弱学習者 “weak”
learning algorithm でもよい

課題

（教えを請うときには）どのレースについて訊けば
よいのか?
最も難しいレースに集中する

(それまでの経験則では最も外れているレースのこと)

これらの経験則を一つの予測規則に統合するに
はどうするのか?
経験則の（重み付き）多数決をとる

Boosting

boosting = 複数個の大雑把な経験則を高精度な予測
規則に変換する一般的方法

より技術的には:
弱(weak)学習アルゴリズム（誤差 ≤1/2-γ なる仮設
（分類規則）を常に見出すことができる）が与えられた
とき

boosting アルゴリズムは、誤差 ≤ ε なる単一の仮説
を構成することができる（ことが証明できる）

理論によれば、しばしば、汎化能力はよい

つもり

boosting 入門 (AdaBoost)
訓練誤差の解析

マージンの理論に基づく、汎化誤差の検討

拡張

結果例

以下のスライドは、主に、下記論文に基づく
Robert E. Schapire. 
The boosting approach to machine learning: An overview. 
In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, 
Nonlinear Estimation and Classification. Springer, 2003. 
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背景

[Valiant’84]
PAC (Probably Approximately Correct) 学習の提唱

[Kearns and Valiant’88]
boosting アルゴリズムを見出すことの提案

[Schapire’89], [Freund’90]
最初の、多項式時間 boosting アルゴリズム

[Drucker, Schapire and Simard ’92]
boosting を用いた最初の実験結果

背景 （続）

[Freund and Schapire ’95]
AdaBoost の提案
以前の boosting アルゴリズムより実用的価値が高い

AdaBoost 使用例:
[Drucker & Cortes ’95] [Schapire & Singer ’98]
[Jackson & Cravon ’96] [Maclin & Opitz ’97]
[Freund & Schapire ’96] [Bauer & Kohavi ’97]
[Quinlan ’96] [Schwenk & Bengio ’98]
[Breiman ’96] [Dietterich’98]

理論とアルゴリズム:
[Schapire,Freund,Bartlett & Lee ’97] [Schapire & Singer ’98]
[Breiman ’97] [Mason, Bartlett & Baxter ’98]
[Grive and Schuurmans’98] [Friedman, Hastie & Tibshirani ’98]

Boosting を形式化

所与の訓練データ集合 X={(x1,y1),…,(xm,ym)}
yi∈{−1,+1} 事例 xi∈Xに対する正しいラベル

for t = 1,…,T:
• 分布 Dt を {1,…,m}の上に定める
• 弱仮説を見出す

ht : X → {−1,+1}
ただし Dt 上で小さい誤差 εt あり

最終仮説 Hfinalを出力
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AdaBoost [Freund & Schapire ’97]

Dtの作成:
•

• 所与 Dtと ht:

ただし: Zt = 正規化定数

最終仮説:
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第一巡目 第二巡目

第三巡目 最終仮説

Boosting Applet
http://www.cse.ucsd.edu/~yfreund/adaboost/index.html
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訓練誤差の解析

定理 [Freund and Schapire ’97]:
εt を ½-γt と書く

この時

従って、もし ∀t: γt ≥ γ > 0 なら

注: AdaBoost は adaptive:
• γ や T を事前に知っている必要はない
• γt >> γ としてもよい
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汎化誤差の解析

期待すること: 
訓練誤差は、継続して、低下する（0になるかも）
Hfinal が複雑になりすぎると、テスト誤差は、増大する
（オッカムの剃刀）

ある実験結果 [Schapire et al. 98]

1,000 巡以降でもテスト誤差は増加しない
訓練誤差が0となった後も、テスト誤差は減少を続ける
オッカムの剃刀のいう単純な規則がよいというのは、誤り

(boosting on C4.5 on 
“letter” dataset)

http://www.cs.princeton.edu/courses/archive/fall05/cos402/readings/boost-slides.pdf

マージンからみると

アイデア: 信頼度 (マージン) を考えよう:
まず下記に注意

定義:  (x,y) のマージン:  
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マージンの分布 [Schapire et al. 98]

0.550.520.14Minimum margin
0.00.07.7%margins≤0.5
3.13.38.4test error
0.00.00.0training error
10001005epoch

Boosting はマージンを最大化する

次の損失関数を最小化することが示せる
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(xi,yi)のマージンに比例

マージンに基づく解析

汎化誤差を訓練事例のマージンの関数で抑える:

マージン大 ⇒ 上界が小さいくなる
上界は学習エポック数に依存しない

boosting は、マージンが最小の事例に着目することに
より、訓練事例のマージンを増加させる傾向にある
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SVM との関係
SVM: x を高次元空間に写像して、線形分
離する

SVM との関係 （続）
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SVM との関係
どちらもマージンを最大化する:

SVM: ユークリッドノルム (L2)
AdaBoost: マンハッタンノルム (L1)

最適化や PAC による上界と関係がでてくる
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拡張: 多クラス問題
事例ごとに２進分類問題に還元する:

• 事例 x はクラス１に属するか否か？
• 事例 x はクラス２に属するか否か？
• 事例 x はクラス３に属するか否か？

. .
 . 

拡張: 信頼度と確率

仮説の予測 ht:

仮説の信頼度 ht:

確率 Hfinal:
log loss 最小化
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AdaBoost の実用的価値

かなり速い

単純かつ容易にプログラムできる

チューニングパラメータは一個だけ (T)
事前知識不要

融通性: どんな分類器とも組合せ可能 (ニューラ
ルネット, C4.5, …)
有効性が証明済み (弱学習器は仮定する)

• 発想の転換: 目標は、単に、random guessing よりよ
い仮説を見つければよいだけ

はずれ値も見つける

御注意

性能は、データと当該弱学習器に依存

AdaBoost が失敗するのは
弱学習器が複雑すぎる (過学習)
弱学習器が弱すぎる (γt→0 となるのが速すぎる)

学習不足

マージンが小 → 過学習

経験的には, AdaBoost はノイズの影響を受けや
すいように思われる
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UCI ベンチマーク
比較

C4.5 (Quinlan の決定木学習)
Decision Stumps (切株. ノード一個)

UCI 結果

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set
of 27 benchmark problems as reported by Freund and Schapire [30]. Each point
in each scatterplot shows the test error rate of the two competing algorithms on
a single benchmark. The y-coordinate of each point gives the test error rate (in
percent) of C4.5 on the given benchmark, and the x-coordinate gives the error rate
of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates have
been averaged over multiple runs.
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テキスト分類

Decision stumps: 単語や短い句の存在. 
例:
“If the word Clinton appears in the document predict 

document is about politics”

データ: Reutersデータ: AP

他の比較 [Quinlan, ’96]

まとめ

boosting は分類課題に有用
• 豊富な理論に裏付けられる

• 実験的にも、パフォーマンスの良さが確認ずみ

• しばしば (いつも、ではない) 過学習しにくい
• 応用事例多い

しかし

• （得られた）分類器は遅い

• 結果は、分かりにくい

• ノイズに敏感なことあり


