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EM の導入の動機（？）

 動機（？）

 観測できないが、結果に関与している変数（属
性）があるとき、（この変数を含む）パラメータ
の最尤推定をしたい。どうしたらよいか？

 （パラメータ以外）すべて観測可能であれば、式は
書ける

 経験（？）

 k-means クラスタリング

少し復習: 最尤推定

 既知確率分布 p(x;) の独立サンプル x1,…,xN
があるとき、パラメータ  を推定する方法の一つ

 尤度 ip(xi;) を最大にする  を推定量とする

非観測変数があるときの最尤推定

 既知確率分布 p(x,z;) の独立サンプル <x1,z1>, …, 
<xN,zN> があるとき、パラメータ  を推定したい。た

だし、x は計測されてデータがあるが、zは計測され

ていない。

 尤度 ip(xi, zi;) を最大にする  を推定量とすれば

よい、と思う。

 しかし、 zi が変量のまま残っているので、  に関し

尤度最大化することができない。

例: クラスタリング

 クラスタリングは、n次元データを、クラスタに分けること。
クラスタに分けるとは、

データには、それが属するグループがあると仮定して
 グループの発見と

 各データが属するグループの発見

という二つの作業をすること

 各データの座標（ n次元）を観測データ xi 、属するグルー
プを未観測データ zi として、各グループの分布のパラ
メータ  を推定することと考えることができる。
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k-means 法

 クラスタリング方法の一つ

 次の繰り返し
 zi が同じ (=j) <xi, zi> を集め、各 zi (=j) ごとその xi を
用いて j を最尤推定する

 j (j=1,…,k) を用いて、 zi を最尤推定する。

 結構うまくいく

 これが使えないか？

背景

 EMアルゴリズムと名付けられて紹介されたのは、1977年の Dempster, 
Nan Laird, Donald Rubin による論文 Maximum Likelihood from 
Incomplete Data via the EM Algorithm においてである.

 著者によれば "The EM algorithm has been proposed many times in 
special circumstances." 

 EM は非観測量があるとき最尤推定量を求める方法である.
 EMアルゴリズムは、あるモデルのパラメータを、次の繰り返しで計算する.

 初期値を何等かの方法で定める。

 一回の計算は

 E step - Expectation step 
 M step - Maximization step

Dempster, A.P. Laird, N.M. Rubin, D.B. (1977). "Maximum Likelihood from 
Incomplete Data via the EM Algorithm". Journal of the Royal Statistical 
Society. Series B (Methodological) 39 (1): 1–38.

応用

 欠測値を補う

 潜在変数の値を推定する

 隠れマルコフモデルのパラメータ推定

 有限混合モデルのパラメータ推定

 クラスタリング

 半教師あり学習.
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簡単な例

あるクラスでの成績分布を考える。
事象A = Aをとる P(A)=1/2
事象B  = Bをとる P(B)=/4
事象C  = Cをとる P(C)=1/2-/2
事象D  = Dをとる P(D)=/4
（ただし、）

パラメータ  をデータから推定したい。
Aは a人、Bは b人、Cは c人、Dは d人いたとする。

a, b, c, d が与えられた時、  を最尤推定しよう

Dempster et al 1977 の例題を簡単にしたもの

簡単な計算

P(A)=1/2  P(B)=/4  P(C)= 1/2/2  P(D)=/4

P(a,b,c,d| ) = C (1/2)a(/4)b(1/2/2)c(/4 )d

log P(a,b,c,d| ) = 
a log(1/2) + b log(/4) + c log(1/2/2) + d log(/4) + log C

最尤推定量 ߤ̂ は ߤ̂ ൌ
௕ାௗ

௕ା௖ାௗ

ただし、ܥ ൌ ௔ା௕ା௖ାௗ !

௔!௕!௖!ௗ!

これを ሻߤሺܮ としよう

P(A)=1/2
P(B)=/4
P(C)=1/2-/2 
P(D)=/4

	ሻߤሺܮ߲
ߤ߲

ൌ
ܾ
ߤ
െ

ܿ
1 െ ߤ

൅
݀
ߤ
ൌ 0
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隠れ変数がある場合

仮に、Aを取った人とBを取った人は、合計 u 人、Cをとった
人は c 人、Dをとった人は d 人であるとわかったとしよう。
の最尤推定量は何であろうか？

ߤ ൌ ܾ ൅ ݀ ܾ ൅ ܿ ൅ ݀⁄

この場合、不完全データ (u,c,d) を観測していることになる。

完全データの対数尤度は前ページと同じであり、最尤推定量は

しかし、b は可観測ではないので、上記問題には適用できない

EMアルゴリズムは、これに、次のように対処する

P(A)=1/2
P(B)=/4
P(C)=1/2-/2 
P(D)=/4

手順は、次の通り。
1. 初期設定。パラメータμと非観測変数Bの値を適宜決める。

以下を繰り返す（どちらから始めてもよい）
2. 非観測変数の値を決める。パラメータμの現在値を用い

て、Bの分布を求め、Bの期待値を求める。それをBの次
の値とする。
より正確には、上記Bの分布を用いて、対数尤度の（Bの
分布に基づく）期待値を求める。

3. パラメータμの値を決める。Bの現在値（と他の観測値）を
用いて、パラメータμの値を最尤推定する。完全データの
分布を用いる。
より正確には、上記「対数尤度の期待値」を最尤化するμ
の値を求める

ステップ2

௞/4ߤ 1 2⁄ ൅ ⁄௞/4ߤ

つまり、Bの条件付期待値は、 ܧ ݄|ܤ ൌ ݑ ௞/4ߤ 1 2⁄ ൅ ⁄௞/4ߤ

従って、ܾ௞ ൌ ݑ ௞/4ߤ 1 2⁄ ൅ ⁄௞/4ߤ
また、ܽ௞ ൌ ݑ െ ݑ ௞ߤ 4⁄ 1 2⁄ ൅ ௞ߤ 4⁄⁄ ൌ ݑ 1 2⁄ 1 2⁄ ൅ ௞ߤ 4⁄⁄

P(A)=1/2
P(B)=/4
P(C)=1/2-/2 
P(D)=/4

確率変数Bは、サンプルサイズ u の二項分布をしていると考
えることができる。そのパラメータは、

より正確には

ステップ2に現れる期待尤度を Q(; k) と書くことにする。すなわち

ܳ ;ߤ ௞ߤ ൌ ஻ܧ ܮ ߤ ,௞ߤ| ,ݑ ܿ, ݀

ܮ ߤ ൌ ܽ log 1 2⁄ ൅ ܾ log ߤ 4⁄ ൅ ܿ log 1 2⁄ െ ߤ 2⁄ ൅ ݀ log ߤ 4⁄ ൅ log ܥ
さて、

である。なお、 ܽ, ܾ	 の分布がߤ௞に依存している（ ܿ, ݀	は定数）

ܮ） ߤ は対数尤度）

ステップ2 （続）

ܳ ;ߤ ௞ߤ 	は、 ܽ, ܾ の期待値をܽ௞, ܾ௞ とすれば

ܽ௞ log 1 2⁄ ൅ ܾ௞ log ߤ 4⁄ ൅ ܿ log 1 2⁄ െ ߤ 2⁄ ൅ ݀ log ߤ 4⁄
൅ܧ஻ log ܥ ,௞ߤ| ,ݑ ܿ, ݀

ܲ ܽ, ܾ, ܿ, ݀; ߤ ൌ
௔ା௕ା௖ାௗ !

௔!௕!௖!ௗ!

ଵ

ଶ

௔ ఓ
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௕ ଵ
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െ
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ௗ
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なお、ܾ௞ ൌ ݑ ௞/4ߤ 1 2⁄ ൅ ⁄௞/4ߤ , ܽ௞ ൌ ݑ 1 2⁄ 1 2⁄ ൅ ௞ߤ 4⁄⁄
である。それは、次から得られる

ステップ3

௞ାଵߤ ൌ ܾ௞ ൅ ݀ ܾ௞ ൅ ܿ ൅ ݀⁄

ステップ3
ܳ ;ߤ ௞ߤ 	 を最大化するߤ は

結果を書き直せば

仮にの値を知っているな
ら、a と b の期待値を計算
することができる。
完全データとする

ܽ ←
1 2⁄

1 2⁄ ൅ ߤ 4⁄
,ݑ ܾ ←

ߤ 4⁄
1 2⁄ ൅ ߤ 4⁄

ݑ

完全データであれば、最尤
推定量を計算することがで
きる。

ߤ ←
ܾ ൅ ݀

ܾ ൅ ܿ ൅ ݀

Expectation step

Maximization step

P(A)=1/2
P(B)=/4
P(C)=1/2-/2 
P(D)=/4
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計算してみると

[1] 0.0 0.5
[1] 5.0 0.6
[1] 5.7692308 0.6119403
[1] 5.8571429 0.6132597
[1] 5.8668076 0.6134042
[1] 5.867866 0.613420
[1] 5.8679813 0.6134217
[1] 5.8679939 0.6134219

u <- 25
c <- 10
d <- 10
mu <- 0

for ( i in 1:8 ) {
b <- (mu/4)*u/(1/2+mu/4)
mu <- (b+d)/(b+c+d)
print( c(b,mu) )

}

P(A)=1/2
P(B)=/4
P(C)=1/2-/2 
P(D)=/4
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より複雑なモデル

 確率モデルであって、一個の著名(?)な分布で表せない
もの、… で表せそうもないもの、…ではなさそうなものが、
世の中にはたくさんある。
 例えば、多峰分布

例: 混合正規分布

 正規分布（ガウス混合）の線形和

線形和（重みの和は１）
p(x) =  j pj(x)

正規分布の線形和であるなら
pj(x) =  N( x; j , j )

として、
p(x) =  j N( x; j , j )
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問題: パラメータが推定できない
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しかし、混合分布の場合、最尤推定をしようと思うと、次の最大化
問題を解かなければいけない（簡単にするため標準偏差は既知）。

データが一個の正規分布から生成されているなら、そのパラメータ
（平均と分散）の推定は容易である。例えば、平均値の最尤推定量
は
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とりあえず、停留点が求まるかどうか、Lagrange関数を微分してみよう

 
 


m

i j
jij xNLL

1

3

1
11 );(log,...),...,( 

















m

i
j

j
i

m

i
j jij

ji

j xN

xNL

1

1
3

1
);(

);(




















j jij

jij

i

iii

i

ii

ii
j
i

xN

xN

xp

jzpjzxp

xp

jzxp

xjzp

);(

);(

)|(

)|(),|(

)|(

)|,(

),|(











Lagrange関数は )1();(log
3

11

3

1
 
 


i

j

m

i j
jij xNL 
























 








m

i
jij

j
i

m

i
jij

T
ji

j
j jij

jij

j

x

xx
xN

xNL

1

1

1

1
3

1

)(

)()(
2

1

);(

);(









できるかもしれない。続けてみよう。
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方程式
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非線形連立方程式だが、これは解けない。
ヒューリスティックスにより、下記のようにすればよさそうだが、果して収束するのだろうか
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参考: EMとの対応

Lagrange関数は
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勿論、対応するのですが、
それは後講釈

EM 一般的な定義

 X={x1,…,xN}  観測データ

 Z={z1,…,zN}  非観測データ
(隠れ変数)

 Y=XZ

 h: 分布のパラメータ（ とも）

注: 混合分布のときの考え方
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௜,௝ݖ ൌ 1	 or		0.		ݖ௜,௝ ൌ 1 iff ݔ௜ はクラスタ j に属する
௜ݖ ൌ ݆	 iff ݔ௜ はクラスタ j に属する

EM 一般的な定義 (続)

 E-Step: 次の仮説 h’ の対数尤度の期待値を求める（式
で表す）. ただし, 現在の仮説 h と観測データ X は既知
とする（目標: ln P( X | h )  の最大化であった）

Q(h’ | h)  =  E[ln P( Y | h’ ) | h, X ]

 M-Step: Q を最大化する h’ を次の h とする

h  argmaxh’ Q(h’ | h)

このパラメータ値で、Zの
分布を決める

対数尤度の期待値を求める

h を決めるときに決めているのはクラスタのパラメタ
Q を決めるときに決めているのはクラスタのメンバー

パラメータはフリーY に関する期待値

X={x1,…,xN}  観測データ
Z={z1,…,zN}  非観測データ
Y=XZ

=∫ (ln P( X, z | h’ )) P( z | h, X) dz

EM E-step
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

],|)'|(ln[
1

XhhyPE i

N

i






 







  

N

i

k

j
jjij

j
i XhxNzE

1 1
],|),|(ln[ 


 







  

N

i

k

j
jjij

j
i xNXhzE

1 1
),|(ln],|[ 

  ],|),|(ln[
1 1

XhxNE
N

i

k

j

z
jjij

j
i

 








  

 
j

jjj xNhxp ),|()|( 

),|()|,( jjj xNhjzxp  

  


k

j

z
jjj

k
j

xNhzzxp
1

1 ),|()|,..,,( 

),|1(],|[ hxzphxzE i
j
ii

j
i 

 




j jjij

jjij

xN

xN

),|(

),|(




EM M-Step
)|'(maxarg

'
hhQh

h



 







  

N

i

k

j
jjij

j
i

h
xNXhzE

1 1'
),|(ln],|[argmax 

h は , ,  の組、hは , ,  の組である. 
最小化は , ,  による偏微分が0とおいて達成できる, 
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'j の推定

 変数 に関する の偏微分（言い忘れ
たが、Lagrange関数を用いている）

 これらを 0 とおく方程式をとけば

)|'( hhQj 















 


















 

N

i j

j
i

N

i

k

j
jjij

j
i

j

j j
j

XhzE

xNXhzE

hhQ

1

1 1

],|[

})),|(ln],|[({

)}1()|({

NN

XhzE
i

j
ii

j
i

j

 



],|[  




j jjij

jjijj

xN

xN
i

),|(

),|(






),|1(],|[ hxzphxzE i
j
ii

j
i 

 




j jjij

jjij

xN

xN

),|(

),|(




'j の推定

 変数 に関する の偏微分

 これを 0 とおけば、次式が得られる

)|( hhQ j

)(

),|(ln],|[

})),|(ln],|[({
)|(

1

1

1 1

jij
i

j
i

jji
j

N

i

j
i

N

i

k

j
jjij

j
i

jj

x

xNXhzE

xNXhzE
hhQ

















 












 












i

j
i

i
i

j
i

j

x






'j の推定

 変数 に関する の偏微分

 これを 0 とおくと次式が得られる

lj













 









 


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
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jijijj

j
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N
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j
i

N
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j
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j
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xx
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111
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1 1
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1
{
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
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i

i

T
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j
i
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
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EM 混合正規分布
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M-Step:

E-Step:


 




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i

j
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j
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







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


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目次

 動機と問題設定

 簡単な例

 ちょっと複雑な例 – ガウス混合分布

 K-meansからのアプローチ

 EMアルゴリズム: 性質とまとめ

分布推定は「教師なし学習」

 教師付き学習: データ <x, z>
 教師なし学習: データ x
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補足: 教師なし学習が必要となるところ

 分布関数（確率密度関数）の推定

 クラスタリング

 外れ値/新規点の検出

 データ圧縮

 可視化

分布推定とクラスタリング

 クラスタリング: 混合分布から生成されたデータに対し、
どの分布から生成されたかを推定する

 隠れ変数: データ点がどのガウス分布から生成されたか
 すなわち, 観測データ <x>, 全データ <x, z>.
 課題: <x> から <x, z> を推定する

各クラスタは混合分
布の個々の分布に
対応すると考える
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混合分布
p(x) =  j pj(x)

混合分布
p(x,z) =  (j pj(x))zj

クラスタリング/密度推定付き

収入

年齢

ある方法: k-means クラスタリング

K-means クラスタリング例

真のデータ 第一回

第二回 第三回

K-means の行っていること

 前提（「動作だけ」を記述するには不要）
 （各正規分布の）分散共分散は同じとする

 分散共分散行列は、対角かつ各軸で等分散とする

 初期値
 クラスタ中心 oj をランダムに定め、推定を開始する

 繰り返し
 分類: 各観測点ごと、その（産みの親である）クラスタを推定する

各クラスターのメンバーを推定するといってもよい

 各 <x> → <x, j>, ただし j = arg min | x - oj | .
 i.e. 最近傍のクラスタ中心を選び、そのクラスタ番号を j とする

 中心の再設定: クラスタごと、同一クラスタの点のみを用いて、そ
の重心（平均値）を新たにクラスタ中心とする

 各 j につき、 oi = center of { x | <x, j> }
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K-means原理

 ポテンシャル関数の最小化

 次の2つのステップからなる

 分類: ܥ に関するܨ ,ߤ ܥ の最小化
 ܥ のメンバーを決める

 中心の再設定: ߤ に関するܨ ,ߤ ܥ の最小化
 ܨ ,ߤ ܥ を最小化する ߤ を求める

min
ఓ
min
஼
ܨ ,ߤ ܥ ൌ min

ఓ
min
஼
෍ ෍ ௜ߤ െ ௝ݔ

ଶ

௝:஼ ௝ ୀ௜

௞

௜ୀଵ

Coordinate descent

 座標軸降下法/座標降下法（?）
 を求めたい

 Coordinate descent
 a を固定し、b に関して最小化

 b を固定し、a に関して最小化

 収束する

 もし、F が有界であれば。

 実際、結構良い局所最小値に。

 K-means は coordinate descent アルゴリズムだ

min
௔

min
௕
ܨ ܽ, ܾ

K-means の欠点

 Spherical な場合しか扱えない

 分散共分散行列が、σI （Iは単位行列）

 各クラスタの重みが等しいときしか扱えない

 混合正規分布から生成されたデータに適用
すると、推定値（例えば、平均値）にbiasが
発生する。

K-means の欠点の解消に向けて

 前2者への対応

 混合（多項）正規分布でモデル化する

 分類実行時に、生起確率が最大となるクラス
タを選ぶ

 K-means: 中心（=分布の中心=平均値）からの距
離が最小のクラスタを選ぶ

 後1者への対応

 bias の原因は、「生起確率最大のクラスタを
選ぶ」 故、属しうるクラスタの確率に従い、複
数のクラスタに属するとする

EM と k-means との対応

 E-Step: 非観測データは期待
値を推定

Q(h’ | h)  
=  E[ln P( Y | h’ ) | h, X ]
=∫ (ln P( X, z | h’ )) P( z | h, X) dz

 M-Step: Q を最大化する h’ を
次の h とする. 最尤推定

h  argmaxh’ Q(h’ | h)

 分類: ܥ に関するܨ ,ߤ ܥ の最
小化

 ܥ のメンバーを決める

 中心の再設定: ߤ に関する
ܨ ,ߤ ܥ の最小化

 ܨ ,ߤ ܥ を最小化する ߤ を求

める

（coordinate descent）

K-means をソフトにしたイメージ
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目次

 動機と問題設定

 簡単な例

 ちょっと複雑な例 – ガウス混合分布

 K-meansからのアプローチ

 EMアルゴリズム: 性質とまとめ

EMアルゴリズムの性質

ܮ ܺ; ߠ ൌ log ܺ ൌ ௜ܺ ௜ୀଵ
௡ 	の結合確率; ߠ

定理

௞ߠ をEMアルゴリズムでられる ݇ 番目のパラメータߠ
とする。この時、 ܮ ܺ; ௞ାଵߠ ൒ ܮ ܺ; ௞ߠ が成立する。
また、適当な条件のもと、 ௞ߠ は、最尤推定量
argmax	ܮ ܺ; ߠ に収束する。
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EM まとめ１

 X={x1,…,xN}  観測データ

 Z={z1,…,zN}  非観測データ (隠れ変数)
 Y=XZ

 h: 分布のパラメータ（ とも）

 次を繰り返す

 E-Step: 非観測データは期待値を推定

Q(h’ | h)  =  E[ln P( Y | h’ ) | h, X ]
=∫ (ln P( X, z | h’ )) P( z | h, X) dz

 M-Step: Q を最大化する h’ を次の h とする. 最尤推定

h  argmaxh’ Q(h’ | h)

EM まとめ２

 混合分布の推定に用いる

 生成された元の分布を表す非観測変数を導入

 EMを適用

 結果はソフトクラスタリングみたい

 クラスタリングに適用

 混合分布の推定として定式化

 結果中に、各サンプルのクラスタへの所属確率

 サンプルを生成する事後確率が最大のクラスタ
を、それが属するクラスタとする
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