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Tuble 6. Results summary of TC systems on Rewters versions 1.

Reuters Reuters Reuters Reuers
System version 1 version 2 version 3 version 4
WORD — 15 (Scut) 31 (Peut) 29 (Peut)
kNN — 69 (Scut) 85 (Scut) 82 (Scut)
LLSF — — 85 (Scut) 81 (Scut)
NNets PARC (perceptron) — — — 82 (Peut)
CLASSI (perceptron) — — 80 —
RIPPER (DNF) — 72 (Seut) 80 (Scut) —
SWAP-1 (DNF) — — 79 —
DTree IND — 67 (Peut) — —
DTree C45 — — 79 (F1) —
CHARADE (DNF) — — 78 —
EXPERTS (n-gram) — 75 (Scu) 76 (Seut) —
Rocchio — 66 (Scut) 75 (Scut) —
NaiveBayes — 65 (Peut) 71 —

CONSTRUE (Exp. Sys))

90 —

Yiming Yang, An Evaluation of Statistical Approaches to Text Categorization, Information Retrieval, vol.1,

69-90 (1999)
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Table 6. Comparative results among different classifiers obtained on five different version of the
Reuters collection. Unless otherwise noted, entries indicate the microaveraged breakeven point;
within parentheses, “M” indicates macroaveraging and “Fy” indicates use of the Fy measure.

Boldface indicates the best performer on the collection.
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