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情報意味論（11）
サポートベクターマシン

理工学部管理工学科

櫻井彰人

基礎的復習: 線形判別関数

次のような a,b,c, を見つけたい

red 点に対し ax + by  c

green 点に対し ax + by  c.

決定境界は線形:
ax + by - c = 0

これも復習: 複雑な境界は？

Christopher Manning のスライドから

どの超平面を選ぶべきか?
 a,b,c にはいくつもの可能性あり

 見つけたどれもが最良なわけではない
[何か「よさ」の基準を設ける必要はある]
 パーセプトロン学習アルゴリズムではどうで

あったか？

 サポートベクターマシンは「最良」のもの
をみつける.
 超平面とそれに近い「困難点」との距離を最

大化する

 直感的解釈: 決定境界に近いところに（別の
クラスの）点がなければ、決定の不確実さは
少なかろう

直感的解釈をもう一つ

 分離境界を幅のある帯に置き換えてみよう。この
幅が狭いときには、選択範囲がせばまり、汎化
誤差の減少につながりそう

サポートベクターマシン (SVM)
サポートベクター

マージン
最大化

 SVM は、分離超平面周囲のマー
ジンを最大化する.
 ラージマージン分類器ともいう

 決定関数はサポートベクターと呼
ばれる訓練データによって完全に
定まる.

 ２次計画問題である

 広範囲の問題に対してうまくいく
方法であると考えられている
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線形分離可能でないならば

 誤りを許す

 コストを払って、本来あ
るべき場所に動かす

 ただ, 超平面はどちら
のクラスからも遠ざけ
る

ラージマージン分類器

 w: 決定超平面への垂線ベクトル

 xi: i 番目のデータ点

 yi: 属するクラス (+1 or -1)   注: 1/0 ではない

 分類器:     sign(wTxi + b)

 そのとき xi の関数マージン: yi (wTxi + b)
 勿論 w を大きくすればマージンは増大する、そこで、、、

（訓練データ全体の関数マージンは、上記の値の最大値）

最大マージン: 定式化

幾何的マージン

 データ点から分離超平面までの距離

 分離超平面に最も近い点がサポートベクター. 

 分離超平面のマージンρは相異なるクラスのサポートベクターがどの程度分
離しているかを示す.   
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線形 SVM を数学的に

 全ての点が超平面から関数値で 1 離れていると仮定しよう. そうであれば

次の２つの制約が訓練データ集合 {(xi ,yi)} から得られる

 サポートベクターに対しては、上記不等式は等式となる; そうなると, 各
データの超平面からの距離は であるから、マージンは次の値
となる:

wTxi + b ≥ 1     if yi = 1

wTxi + b ≤ 1   if yi = 1 

w
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線形サポートベクターマシン

 超平面

wT x + b = 0

 制約:
mini=1,…,n |wTxi + b| = 1

 書換えると:
wT(xa–xb) = 2

ρ = ||xa–xb||2 = 2/||w||2

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

線形サポートベクターマシン

 次の２次計画問題が得られる: 

 よりよい定式化 (min ||w|| = max 1/ ||w|| ): 

次のような w と b を見出せ: 

は最大であり, 全ての{(xi , yi)}につき

wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1
w

2


次のような w と b を見出せ:

Φ(w) =½ wTw は最小であり, すべての{(xi ,yi)}につき
yi (wTxi + b) ≥ 1
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最適化問題の解法

 線形制約のもとでの２次関数の最適化

 ２次計画問題は、よく知られた数理計画問題の一つ. 多くの解法が知られて
いる

 解法にあたっては、ラグランジュ乗数 αi を主問題の各制約に割付けた双対
問題を構成する:

次のような w と b とを見出せ
最小化: Φ(w) =½ wTw ; 

全ての {(xi ,yi)} につき:  yi (wTxi + b) ≥ 1

次のような α1…αN を見出せ

最大化: Q(α) =Σαi  ½ΣΣαiαjyiyjxi
Txj ; 

(1) Σαiyi = 0
(2) αi ≥ 0 , 任意の αi
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主問題のラグランジアンは

従って、

となるゆえ、停留点は、

これらを主問題に戻せば

最適化問題の解法

 解の形は: 

 各非零の αi は、対応する xi がサポートベクターであることを示す.
 識別関数は次のようになる:

 当該式は新規点とサポートベクトル xi の内積であることに注意.
 また、当該最適化問題を解くには、訓練データのすべての組合せに関する

内積 xi
Txj の計算が含まれていることを注意しておく.

w =Σαiyixi , かつ αk 0 なるすべての xk につき b= yk- wTxk

f(x) = Σαiyixi
Tx + b

ソフトマージン分類器

 もし訓練データが線形分離可能でなければ, スラック変
数 ξi を用いて分類が難しい点やノイズがのった点の誤
分類を許すようにする.

ξi

ξi

ソフトマージン分類器

 以前の定式化:

 スラック変数を含む、新しい定式化:

 パラメータ C は過学習を制御する方法と見ることができる.

次のような w と b とを見出せ
最小化: Φ(w) =½ wTw ; 

すべての {(xi ,yi)} について:  yi (wTxi + b) ≥ 1

次のような w と b とを見出せ

最小化: Φ(w) =½ wTw + CΣξi ; 

すべての {(xi ,yi)} について:  yi (wTxi + b) ≥ 1 ξi , かつ

すべての i について:     ξi ≥ 0 

ソフトマージン分類器 – 解

 ソフトマージン分類器の双対問題:

 スラック変数 ξi もラグランジュ乗数も、双対問題には表れていない！

 再び, 非零のαi に対応する xi はサポートベクターである.
 当該双対問題への解は:

次のような α1…αN を見出せ:
最大化: Q(α) =Σαi  ½ΣΣαiαjyiyjxi

Txj ; ただし

(1) Σαiyi = 0
(2)  すべての αi につき 0 ≤ αi≤ C

w =Σαiyixi             

b= yk(1- ξk)  wTxk where k = argmax αk
k f(x) = Σαiyixi

Tx + b

明示的には w がなくても
分類できる!
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SVMを用いた分類

 所与の新点 (x1,x2) に対し, その超平面への
垂直射影を計る（scoreとしよう）:
 2次元の場合:  score = w1x1+w2x2+b.

 すなわち: score = wx + b = Σαiyixi
Tx + b

 信頼限度 t を定めよう.

3
5
7

score > t  : yes

score < -t : no

それ以外: 判定放棄

線形 SVM:  まとめ

 分類器は、分離超平面 separating hyperplane.

 最も重要な訓練データ点がサポートベクターとなる; それが当該超平面を決
める.

 ２次計画問題を解けば、どの点 xi がサポートベクターで非零のラグランジュ
乗数 αi に対応するかが分かる.

 当該問題の双対問題においても解法においても、訓練データ点は、内積の
中にしか現れない: 

次のような α1…αN を見出せ:
最大化: Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj , 但し

(1) Σαiyi = 0
(2)  すべての αi につき: 0 ≤ αi≤ C

f(x) = Σαiyixi
Tx + b

非線形 SVM
 線形分離可能なデータに対しては、少々のノイズがあっても、うまくいく:

 しかし、データ集合が線形分離可能でなかったらどうしよう? 

 例えば… データをより高次元の空間に写像したらどうだろうか:

0

x2

x

0 x

0 x

非線形 SVM:  特徴空間

 一般的なアイデア:   もともとの特徴空間は、いつで
も、ある高次元特徴空間に写像すれば、線形分離可
能となる:

Φ:  x→ φ(x)

高次元空間への写像: 問題点

 計算時間：

 データが1001個あれば、（非線形関数で）1000次元に写像すれば、必ず、線形
分離できる。

 しかし、非線形関数の計算は時間がかかるのに、データ1個につき1000回の計
算（共通部分を多くして計算するにせよ）が必要では、大変な計算量となる

⇒ カーネル関数の利用（カーネルトリック）による、計算量の大幅な削減

 汎化能力：

 データが1001個あれば、（非線形関数で）1000次元に写像すれば、必ず、線形
分離できる。

 それは、すなわち、どんな教師データであっても、それを実現できるということ。す
なわち、過学習！！

⇒ この問題の解決こそ、ラージマージン分類器の本領
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高次元空間への非線形写像

 データ x から高次元空間 F への（非線形）写像
(x) を考える. FRN :
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双対問題： 拘束条件付き最大化
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カーネルトリック “Kernel Trick”

 注目すべきは、 (x) は、 (x)(y) というように、
内積でしか表れない。

 そこで、もし、K(x,y)=(x)(y) となる、簡単な関
数Kがあれば、計算が非常に楽になる。

 特に、 K(x,y) が xy の関数であるとさらに楽になる
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Mercerの定理

 関数 K が内積の形で書ける: 

ための必要十分条件は、K が対称かつ半正定値で
あることである. i.e., 

なお、 i(x)は K(x,y)の固有関数となる. i.e.,

)()(),(
1

yxyxK ii
i

i 






 



fdxdyyfxfyxK

xyKyxK

any for 0)()(),(

),(),(

)()(),( ydxxyxK iii  

よく使われるカーネル関数
 線形カーネル

 多項式カーネル

 RBFカーネル

 MLP

 例: 2-次元ベクトル x=[x1   x2] に対し K(xi,xj)=(1 + xi
Txj)2

,とおく
このとき、次の式が成立する K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T  [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi) Tφ(xj)         
ただし φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]
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SVM: 汎化能力の推定

 汎化能力最大(新規データに対して最も正確)の分類
器がほしい.

 良い汎化性能を得るための糸口は?
 訓練データを大きくする

 訓練データに対する誤りを小さくする

 容量/分散 (モデル記述パラメータ数, モデルの表現
能力) をおおきくする

 SVM では、これらの量に基づいて、新規データに対
する誤差限界を明示的に示すことができる.

容量/分散: VC 次元

 理論的なリスク限界:

 Risk = 平均誤り率

  – 当該モデル (パラメータで決まる)
 Remp – 経験リスク, l – 観測数, h – VC 次元, 当該式は確率 (1-η) 

で正しい

 VC (Vapnik-Chervonenkis) 次元/容量: shatterできる点の最大
数

 ある点集合がshatterできるとは、その任意のラベル付けを当該
分類器が行えること.

 重要な理論的性質. しかし, 実際にはあまり使われない

l

hlh
RR emp

)4/log()1)/2(log(
)()(
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例: 超平面のVC次元

 d 次元空間に n 個の点があり、それらは、 red か
green とラベルが付けられていると仮定する. n を
(d の関数として) どれだけ大きくとれば, red 点と
green 点が線形分離でなくなる例が作れるか?

 例, d =2 に対しては n  4.

スケッチ: 
マージン最大化の理論的な正当化

 Vapnik は次のことを証明した:
最適な線形判別器クラスの VC 次元 h は、次の上界をもつ

ただし ρ はマージン, D は訓練事例をすべて囲い込む最小の超球
の直径, そして m0 は（事例の表現空間の）次元である.

 直感的に, これは空間の次元 m0 にかかわりなく, マージン ρ を最
大化することにより、 VC 次元を最小化することができる.

 こうして, 分類器の複雑度は、次元数に関わりなく小さく保つことがで
きる.
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SVM の性能

 SVM は、最良の性能を持つと考える人は多い.
 統計的な有意性は明確な場合もそうでない場合も.
 SVM と同程度の性能をもつ手法は他にもある.
 例: regularized logistic regression (Zhang & Oles)

 Tong Zhang, Frank J. Oles: Text Categorization Based on 
Regularized Linear Classification Methods. Information 

Retrieval 4(1): 5-31 (2001)

 比較研究の例: Yang & Liu
 Yiming Yang, Xin Liu: A re-examination of text categorization 

methods, 22nd Annual International SIGIR (1999).

 非常によく使われたデータセット

 21578 documents
 9603 training, 3299 test articles (ModApte split)
 118 categories

 一つの article は複数の category に属しうる

 118 個の２値分類

 1 document 当たりの category 数
 1.24

 10 categories のみ大きい（全 118 categories）

大きめの categories
(#train, #test)

評価例: 古典的な Reuters データ

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)

Reuters Text Categorization data set 
(Reuters-21578) document 例

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" 
NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE>    CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off

tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining 
industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the 
future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate 
whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, the NPPC 
said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the 
industry, the NPPC added. Reuter

&#3;</BODY></TEXT></REUTERS>

New Reuters: RCV1: 810,000 文書

 Reuters RCV1 の頻出トピック

http://about.reuters.com/researchandstandards/corpus/statistics/index.asp
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評価尺度
 Recall: クラス i のdocument中、正しく i に分類された

ものの割合:

 Precision:クラス i に分類されたdocument中、本当にク
ラス i に属するものの割合:

 Accuracy (1- error rate) 正しく分類されたdocument
の割合:

 Micro-average: クラス間の平均。各クラスの値にクラス
の要素数を重みとして平均。各要素（document）の値
の平均。

 Macro-average: クラス間の平均。各クラスの値を重み
を等しいとしての平均。普通は用いない。
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Dumais et al. 1998: 
Reuters – Break-Even Performance

Rocchio NBayes Trees LinearSVM
earn 92.9% 95.9% 97.8% 98.2%
acq 64.7% 87.8% 89.7% 92.8%
money-fx 46.7% 56.6% 66.2% 74.0%
grain 67.5% 78.8% 85.0% 92.4%
crude 70.1% 79.5% 85.0% 88.3%
trade 65.1% 63.9% 72.5% 73.5%
interest 63.4% 64.9% 67.1% 76.3%
ship 49.2% 85.4% 74.2% 78.0%
wheat 68.9% 69.7% 92.5% 89.7%
corn 48.2% 65.3% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 88.4% 91.4%
Avg All Cat 61.7% 75.2% na 86.4%

S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representations for text categorization. In 
CIKM-98: Proceedings of the Seventh International Conference on Information and Knowledge Management, 1998. 

Break Even: Recall = Precision

Recall: = TP/(TP+TN); % 当該カテゴリ中そのカテゴリに属すると判定したもの

Precision: = TP/(TP+FP); % そのカテゴリに属するとした中で本当にそのカテゴリに属するもの

Precision vs. Recall - Category “Grain”
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Recall: = TP/(TP+TN); % 当該カテゴリ中そのカテゴリに属すると判定したもの

Precision: = TP/(TP+FP); % そのカテゴリに属するとした中で本当にそのカテゴリに属するもの

Precision vs. Recall - Category “Earn”
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Precision vs. Recall - Category “Crude”
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Precision vs. Recall - Category “Ship”
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カーネルによる違い (Joachims)

T. Joachims, Text Categorization with Support Vector Machines: Learning with Many Relevant 
Features. Proceedings of the European Conference on Machine Learning (ECML), Springer, 1998

Fig. 2. Precision/recall-breakeven point on the ten most frequent Reuters categories and microaveraged performance over all Reuters 
categories, k-NN, Rocchio, and C4.5 achieve highest performance at 1000 features (with k = 30 for k-NN and  = 1.0 for Rocchio). 
Naive Bayes performs best using all featurcs.

Yang&Liu: SVM vs 他の手法

まとめ

 サポートベクターマシン (SVM) は
 サポートベクターに基づいて超平面を決める

 Support vector = 判定境界付近のクリティカルな点

 線形 SVM は線形分類器.
 カーネル: 高次元へ写像するが、その内積は低次元の
内積で簡単に計算できる

 リスクの上界 (リスク = テストデータでの期待誤り)
 （邪魔な属性が多いときの）分類器としてベスト?

 数1000も属性があるときは、安定的に強い

 ポピュラー: SVMlight がきっかけ?
 速くて無料 (研究目的には)
 他にもいくつか: TinySVM, libsvm, ….

参考
 A Tutorial on Support Vector Machines for Pattern Recognition 

(1998) Christopher J. C. Burges
 S. T. Dumais, Using SVMs for text categorization, IEEE Intelligent 

Systems, 13(4):21-23, Jul/Aug 1998
 S. T. Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive 

learning algorithms and representations for text categorization. 
Proceedings of CIKM ’98, pp. 148-155. 

 A re-examination of text categorization methods (1999) Yiming Yang, 
Xin Liu 22nd Annual International SIGIR

 Tong Zhang, Frank J. Oles: Text Categorization Based on Regularized 
Linear Classification Methods. Information Retrieval 4(1): 5-31 (2001) 

 Trevor Hastie, Robert Tibshirani and Jerome Friedman, "Elements of 
Statistical Learning: Data Mining, Inference and Prediction" Springer-
Verlag, New York. 

 ‘Classic’ Reuters data set: http://www.daviddlewis.com /resources 
/testcollections/reuters21578/

 T. Joachims, Learning to Classify Text using Support Vector Machines. 
Kluwer, 2002.

カーネル法

カーネルにはいろいろ

 「カーネル」という用語は、一般には（対称や正定値とは限らない）２
変数関数に使われることも多い。
例）ノンパラメトリックな確率密度推定

などに用いる密度関数 g(x) も「カーネル」と呼ばれる（関係はあるの
ですが）。
例）積分変換の核関数

 最近では、正定値カーネルのことを単に「カーネル」と呼ぶことが多
いので（Mercer’s theoremのせいか？）、注意が必要。





N

i
ixxg

N
xp

1

)(
1

)(
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カーネル法の動機

 線形関数の学習には良い性質が多い

 最適解は一つ

 高速な学習アルゴリズムが存在する

 統計的な解析がうまくできる

 しかし、大きな問題がある

 学習能力が不十分（仮説空間の複雑性が不
足）

歴史を紐解くと

 例の Minsky & Pappert "Perceptrons" でその
弱点を明らかにした

 ニューラルネットワークは、この弱点を、線形関
数に対し非線形の活性化関数を施すことによっ
て、克服した

 学習能力の低さを解決し、学習アルゴリズムが広く利
用できることを示した

 しかし学習速度の遅さ、極小点の多さという問題に遭
遇した

そこで、カーネル法

 カーネル法は、線形関数に拘るのだが、そ
れを高次元空間で行おうというもの:

 期待しているのは、特徴空間が、入力空間
よりはるかに高い次元を持てば、表現能力
（学習能力）が増大するであろうということ.

FxXx  )(: 

例

 次の写像を考える

 この特徴空間で線形制約を考える。例えば:

 （この場合）楕円になる – i.e. すなわち、元の入
力空間でみると、非線形な形となる.

),,,(),( 2
21221

2
121 xxxxxxxx 

cbxax  2
2

2
1

特徴空間の表現能力

 表現能力（従って、学習能力）はその次元
に比例する – 例:

 2次元:

定理: m 次元空間の一般位置に m+1 個の
点が与えられると、それらのどのような2値分
類も線形閾値関数で表現できる

関数の形

 というわけで、カーネル法では、特徴空間では線
形関数を用いる:

 回帰課題のときには、これが回帰関数となる。

 分類課題の場合には、この関数値に閾値関数を
施す必要がある（単に、0 or 1 にするためです）

)(, xx w

 bxx  )(,sgn w
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高次元空間での問題

 学習能力を非常に高くすることは、実は容
易である。そして過学習が発生する: 
どんな分類も表現できるということは、汎化
能力がないということである

 長いベクトルを扱うわけであるから、計算
量も馬鹿にならない

対処法

 過学習への対応：マージン最大化

 計算量への対応: カーネルトリック

ところで、SVMでは

 最適化問題は

 :subject to

min
,, bw

 
0

1)(,

||||
2

1

1

2





 


i

iii

m

i
i

bxy

C






w

w

計算量を考えてみると

 2次カーネルでは

例えば 30x30 = 900 ピクセルの画像に対
しては、 約405000次元となってしまう

 重複を省いて数えた

 この特徴空間で計算するのは、あまりに馬
鹿らしい

),,,(),( 2
21221

2
121 xxxxxxxx 

2900C

双対表現を考える

 荷重ベクトルの空間を制限したらどうだろうか。
例えば、次のように、訓練データの線形結合で表
現できるもののみを考える（パーセプトロンアル
ゴリズムを思い出す）:

 このとき、未知例に対する内積は、





m

i
ii x

1

)(w
実は一定の条件のもと、最
適値に対して、これは常に
成立する（Representer 
Theorem)





m

i
ii

m

i
ii xxxxx

11

)(),()(,)()(, w

双対変数を学習する

 この αi は双対変数と呼ばれる

 荷重ベクトル w が訓練データの（変換の）張る空間（未知データも含むとし
よう）に直交する成分を持っていたとしても、その成分は、予測には何の影
響も与えない（前のスライド）ゆえ、「ある解（w）があれば、それと予測能力
が同じで、訓練データの張る空間に属する解がある」

 representer theorem という

 もし未知データが、訓練データの張る空間に属さないときはどうなるか？実はこ
の問いは意味がない。訓練データの張る空間に属さない成分については、訓
練データに情報がないので、答えようがないからである。

 荷重ベクトルを直接学習する代わりに、この双対変数の学習を行えばよい
ことになる
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SVM の双対問題

 先ほどの双対問題は、SVM最適化問題の双
対問題としても得られる:

 :subject to

max


iC

y

xxyy

i

m

i
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ji
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i
i

 allfor 0

0
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
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
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





ここで、カーネルを用いると

 内積しか使っていないことに注意

 仮に、次のようにして計算が簡単にできたら:

 そうすると、訓練時にも未知データに対しても、
（極めて高次元の）特徴空間での計算を実質的
には行う必要がなくなる

)(),(),( zxzx  
大変簡単計算が:

Kの計算が簡単だと
いう仮定のもと

その例

 例によって次の例を考えると

 こんな具合:

),,,(),(: 2
21221

2
121 xxxxxxxx 

2
,

)(tr

,)(),(

zx

zzxx

zzxx






tt

ttzx  同一位置の要素の積和

計算の効率性

 つまり、例えば、先ほどの 約405000次元のベクト
ルの場合、実は 900 次元のベクトルで内積をとり、
それを二乗するだけでよいことになる

 一気に敷衍すれば、無限次元の特徴空間も扱うこ
とができることになる. 例えばガウスカーネル:













 


2

2

2
exp),(




zx
zx

無限次元の特徴関数を用いてその内積
で表現可能なことを示すのは少々面倒。

),(),(lim,, yxyxXyx n
n

 


非線形化法としてのカーネル法
非線形データ解析方法としての
カーネル法

 「線形判別」における「判別」を非線形にするという視点か
らカーネル法を見てきたが、「線形」関数ではなく、訓練
データ空間での非線形関数の推測する方法として、カー
ネル法を考えることができよう。

 （何らかの）線形手法において、線形関数を非線形関数
に置き換える方法としてのカーネル法を考えよう。すなわ
ち

Xw   Xf⇒
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例えば（といってもSVMの例）
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活躍するものは

 再生性
 関数空間H に属する（非線形)関数の値が内積で計算できる

 カーネルトリック
 高次元（無限次元）関数空間H において、内積が容易に計算で

きる。

 さまざまな線形データ解析手法がH上で適用可能
SVM, Kernel 主成分分析, Kernel 正準相関分析

 ・・・正定値カーネル
データxiとxjの類似度
（まったく似ていない時０）

),()(),( jiHji xxkxx 

 
H

xfxf )(, fも(x)もHの要素。
f(), (x)()と書いた
方が良かろう

カーネルによる非線形化

 線形項 の代わりに

 再生性

 多くの場合

 Gram行列を用いて計算する

Xw   Xf
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Representer Theorem
Theorem H をRKHSとし、k : X ×X → R, をそのカーネル（コンパク
ト領域上の対称な半正定値関数）とする. 任意の関数 L : Rn → R, と
任意の非減少関数 Ω : R → R を考える. もし

が well-defined であれば次の式を満たす が存在する

が を達成する。さらに, もし Ω が増加関数であれば、 J (f ) 
を最小にするものはどれも (2) 式で表現される。

  ))(,),((min:)(min: 1

2*
nHHfHf

xfxfLffJJ 


Rn  ,1





n

i
ii xkf

1

),()( 
*)( JfJ 

(1)

(2)

PCA
 主成分分析（PCA）

 m次元データ
 分散最大化する方向（単位ベクトル a）の発見

分散共分散行列

Vの単位固有ベクトル

第 p 主成分の軸 = up

データ Xj の第 p 主成分= 
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PCAの非線形化

  





N

i
j j

T
Ni

TT

a
XaXa

N
Xa

1

21

1||||

1
][Varmax

  





N

i
j jNi

f
XfXf

N
Xf

1

21

1||||
)()(

1
)]([Varmax

    





N

i
j jNi

fHf
XfXf

N
Xf

k 1

2
1

1||||,
)(,)(,

1
)(,Varmax

)(, iXf  は Hk のベクトル ⇒ Hk における線形な問題

特徴ベクトル に対する Hk 内のPCA)(),...,( 1 NXX 

F を探す空間として
RKHS Hk をとると
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カーネルPCA

カーネル k を設定

特徴ベクトル に対する Hk 内のPCA)(),...,( 1 NXX 

   





N

i
i

fHf
f

N
Xf

k 1

2

1||||,

~
,

1
)(,Varmax   

j jNii XX )()(
~ 1





N

i
iif

1

~ としてよい

 2

1

2

1

~~
,

~1
K

N
T

N

a

N

j
ajj   

 

そうすると、分散 jijiK  ~
,

~~
, 




2~
max KT

1
~  KT

主成分は

 Kf T

i iii iiHk

~~
,

~
|||| 2  

ちょっとしたまとめ

 カーネルによる非線形化

 カーネル化

 線形関数 wTX ⇒非線形関数 f(X) ⇒再生性

 RKHS内の特徴ベクトルに対する線形手法とも考えられる

 データとパラメータの内積を使って表される線形手法（射影、相関、分散

共分散 etc.）なら同じように適用可能

 例: SVM, カーネルPCA, カーネルCCA （正準相関分析）、スプライン平

滑化、カーネルFisher判別分析等

 非線形化することの特徴

 線形では捕らえることのできない特性の把握

 ただし、捕らえることのできる非線形性はカーネルに依存

 
kHii Xff )(,X


