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情報意味論（3） 決定木と過学習

櫻井彰人

慶應義塾大学理工学部
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2014/10/19
スライド 40, 42 を修正
74以降順序を修正

決定木

 復習になる方へ、ご容赦を。

 決定木を道具に、機械学習アルゴリズム共通の
課題を説明します

 過学習

 バイアス

 オッカムの剃刀 etc. 
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機械学習の材料

 訓練データ・事例、学習データ・事例、
 事例＝instance＝sample
 ある（一般には未知の）確率分布に従って生成される

 訓練データ＝独立に生成された事例の集合

 仮説集合

 希望の結果との差を示す数値
 誤差、誤り率、コスト

 未知のデータ
 学習結果の能力を評価するデータ

 訓練データとは異なる
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機械学習の手段

 仮説集合

 （機械学習の）答えの候補＝仮説
 一つの決定木 ＝ 一つの仮説

 作りうる決定木の集合 ＝ 仮説集合

 学習過程

 仮説を一つとり、

 訓練データをうまく説明するかどうかを調べ

 満足が行く仮説であれば、それを答えとする。

 不満であれば、上記を繰り返す。
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決定木 Decision Trees

 分類器 Classifiers である

 事例 : 属性 attribute (または特徴 feature) のベクトル＋ラベル

 内節 Internal Nodes: 属性、または属性値のテスト

 典型的: 属性 or 等しいかどうかのテスト (e.g., “Wind = ?”)
 その他 不等式や様々なテストが可能

 枝 Branches: 枝を選ぶ条件である属性値 (テストのときはテストの結果)
 一対一対応 (e.g., “Wind = Strong”, “Wind = Light”)

 葉 Leaves: 割当てた分類結果 (分類クラスのラベル Class Labels)

Outlook?

Humidity? Wind?Maybe

Sunny Overcast Rain

YesNo

High Normal

MaybeNo

Strong Light

PlayTennis
に対応する決定木

Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Cloudy Hot High Weak Yes

D4 Rainy Mild High Weak Yes

D5 Rainy Cool Normal Weak Yes

D6 Rainy Cool Normal Strong No

D7 Cloudy Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rainy Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Cloudy Mild High Strong Yes

D13 Cloudy Hot Normal Weak Yes

D14 Rainy Mild High Strong No

Adapted from Mitchell, 1997
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決定木はブール関数

 決定木はブール関数

 表現力: 任意のブール関数 (リテラルは属性変数のテスト)が表現可能

 なぜ?
• 決定木のあらわす論理関数は、Disjunctive Normal Form (DNF) でかける

• 下記の決定木: (Sunny  Normal-Humidity)  Overcast  (Rain  Light-Wind)

 概念を表現するブール関数の例

 , ,  (XOR)
 (A  B)  (C  D  E)
 m-of-n

Outlook?

Humidity? Wind?Yes

Sunny Overcast Rain

YesNo

High Normal

YesNo

Strong Light

概念 PlayTennis
の決定木
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決定木と判別境界

 事例は, 多くの場合, 離散属性値で表現される

 勿論、連続値も扱う拡張がある

 典型的な型

• 名義・名辞 nominal ({red, yellow, green})

• 離散化・量子化 quantized ({low, medium, high})

 数値の取り扱い

• 離散化 discretization, ベクトル量子化 vector quantization: 閾値を用い

て分割する

ex. U. M. Fayyad and K. B. Irani, Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning, Proc. 13th IJCAI (1993).
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決定木と判別境界

 連続値をそのまま用いることもある

• しかし、勿論、枝分かれする必要がある

• 各ノードである閾値より大きいか小さいかで分ける

• 閾値は、学習時に決める

• この場合、クラス間の判別境界は、超平面で構成されることになる

 例: 軸並行な方形によって事例空間を分割する
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学習過程＝仮説出力過程

 一般に、学習過程は、仮説を出力する（仮説を仮説空間から選んでくる）過

程である。

 一回だけ出力する

 予め分かる回数だけ出力する

 無限回出力する

 仮説空間が有限な場合（仮説空間に含まれる仮説の個数が有限の場合）

 全部を試みて、最適なものを出力する

 一部を試みて、その中で、最適なものを出力する

 多くの場合、全部を調べる時間がない

 仮説空間が無限の場合

 一部を試してみるしかない

 最良なものを見つける方法がない限り、候補を無限に出力し続ける

 いずれにせよ、探索順序が問題
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仮説の選択順序

 仮説を無限回出力する
 見かけ上は、一個の仮説を出力して終了

 指定した停止基準を満たした場合、終了とする

 なぜ無限回出力するか？
 最適解が、繰り返し計算の極限でしか求まらない

 求める順序が問題
 段々「良く」なって行って欲しい

 （何らかの基準に従い）好きなところで停止できる

 実際は、必ずしもそうではない。

 バイアス
 どの順序をとるにせよ、一般には、見つけうる解（近似
解）に片寄りが生じる。これを学習バイアスという。
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決定木の学習

 仮説集合は有限集合

 離散変数だけの時。ある葉に至る路上では、同じ属
性は2度現れない。

 離散変数に対して。閾値は無言個ありうるが、異なる
結果を出すものは有限個しかない。

 しかし、全数チェックはできない

 膨大すぎる。

 どうする？
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決定木の学習: トップダウン帰納 (ID3)

 アルゴリズム Build-DT ( Examples, Attributes)  
 部分木に再帰的に適用される

 Examples: 事例の部分集合、Attributes: 属性の部分集合

IF Examples の label が同一 THEN RETURN (その label を付した葉節)
ELSE

IF Attributes が空集合 THEN RETURN (多数派 label を付した葉節)

ELSE

最良属性 A を根節として選ぶ. 以下で作る木を子とする木を作り、値とする.

FOR A のそれぞれの値 v
条件 A = v に対応した, 根節からの枝を作成する

IF {x  Examples | x.A = v } = Ø

THEN 多数派 label を付した葉節 を作成

ELSE Build-DT ({x  Examples | x.A = v }, Attributes – {A})
12
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Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Cloudy Hot High Weak Yes

D4 Rainy Mild High Weak Yes

D5 Rainy Cool Normal Weak Yes

D6 Rainy Cool Normal Strong No

D7 Cloudy Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rainy Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Cloudy Mild High Strong Yes

D13 Cloudy Hot Normal Weak Yes

D14 Rainy Mild High Strong No

決定木の学習: 再帰の部分

D13

D12 D11

D10
D9

D4

D7

D5

D3
D14

D8

D6
D2

D1

D13

D12

D11

D10

D9

D4
D7

D5

D3

D14

D8 D6

D2

D1

Outlook

[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]
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[21+, 5-] [8+, 30-]

決定木の学習: 最良属性とは？ (ID3)

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

 どの属性が最良か?
 例えば、次の例では、どちらがよいか？
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最良属性とは

 その属性を選んだ結果、その先、木がより小さくなる方

がよかろう

 木が小さい方がよさそうなのは、なぜか？

 詳細な説明は後日。ここでは、木が小さい⇒葉までの距離が短い⇒少

ない属性で決定できる・決定までの判断数が少ない⇒本質に近そう

 ２値分類を考えよう

 [10+,10] と [0+,20] と
どちらの木が小ささそう？

0.0
0.5 1.0

木
の
大
き
さ

＋の割合
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最良属性とは

 色々な関数がありえよう。

 横軸を"+"のクラスのデータの割合とす

る。0.5 でピーク。0.5 の軸に線対称

 エントロピー（平均情報量）はその一つ

H(D)  -p+ logb (p+) - p logb (p)

0.0
0.5 1.0

木
の
大
き
さ

＋の割合
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[21+, 5-] [8+, 30-]

最良属性とは: 計算例

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]

属性を選ぶ前のエントロピーは െଶଽ
଺ସ log

ଶଽ
଺ସ െ

ଷହ
଺ସ log

ଷହ
଺ସ ൎ 0.9936507

0.7062741   0.7424876 0.9366674   0.6193822
26/64           38/64 51/64           13/64

0.7277758 0.8722188

属性を選んだ後のエントロピー
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エントロピー: 情報理論的定義

 考察に関わる要素

 D: 事例の集合 {<x1, c(x1)>, <x2, c(x2)>, …, <xm, c(xm)>}

 p+ = Pr(c(x) = +), p = Pr(c(x) = )  

 定義

 H は確率密度関数 p 上で定義する

 D の事例に対して, その + と – ラベルの頻度を p+ と pで表す

 D の c に対するエントロピー は:
H(D)  -p+ logb (p+) - p logb (p)

 単位は?
 対数の底による (b = 2 なら bits, b = e なら nats, 等.)

 一ビットは、最悪の場合(p+ = 0.5) の一事例を符号化するのに必要とされる

 不確実さが小さければ (e.g., p+ = 0.8), 1ビットより小さくて十分
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 不確実さ・不明瞭さの尺度; 不確実なほど大きくなる値
 計る対象（量）

• 純粋さ purity: 事例集合が、ただ一つのラベルをもつ状態に、どれだけ近いか

• 不純さ impurity (乱雑さ disorder): ラベルがまったく分からない状態にどれだけ近いか

 尺度: エントロピー

• 正の相関:  不純さ impurity,  不確実さ uncertainty,  不規則さ irregularity,  驚き surprise
• 負の相関:  純粋さ purity,  確かさ certainty, 規則性 regularity,  冗長さ redundancy

 例
 簡単のため, H = {0, 1}, ある分布 Pr(y) に従うと仮定

• (2個より多い)離散的なクラスラベルでも同様

• さらに連続確率変数でもよい: 微分エントロピー differential entropy (和を積分にしただけ)
 y に関して最も純粋: 次のいずれかの場合

• Pr(y = 0) = 1, Pr(y = 1) = 0
• Pr(y = 1) = 1, Pr(y = 0) = 0

 純粋さが最も少ない確率分布は?
• Pr(y = 0) = 0.5, Pr(y = 1) = 0.5
• 最大: 不純さ/不確実さ/不規則性/驚き

• エントロピーの性質: 凹関数 (“上向きに凸”)

エントロピー: 直感的説明

0.5 1.0

p+ = Pr(y = +)

1.0

H
(p

) 
=

 E
n

tr
o

p
y(

p
)
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情報量増分: 情報理論的定義

 属性値に基づく分割

 復習: D の分割 partition は, 和集合が D となるような排他的部分集合の集合

 目標: 属性 A の属性値に基づく分割により削減される不確実性・不純性を計る

 定義

 属性 A に関するD の情報量増分 は, A を用いた分割によるエントロピー減少分の期待値:

但し Dv は {x  D | x.A = v }, すなわち,  D 中の事例で属性 A の値が v であるものの集合

 補足: A による分割によって生じる部分集合 Dv の大きさに従ってエントロピーの大きさを調整

 エントロピー値は、「集合の要素一個あたり」の情報量となっているため

 どちらの属性を使うのがいい?

         




















 

 values(A)v
vv

values(A)v
v

v DHDDHD
D

DH
D

D
DH AD,Gain

1

[21+, 5-] [8+, 30-]

A1

True False

[29+, 35-]

[18+, 33-] [11+, 2-]

A2

True False

[29+, 35-]
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例

 概念 PlayTennis 用の訓練事例

 ID3  Build-DT 但し Gain(•) を使用

 ID3 の動きを追ってみよう

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

21

ID3 による PlayTennis 決定木作成 [1]

 根節の属性を選ぶ

 事前 (無条件) 分布: 9+, 5-
 H(D) = -(9/14) log (9/14) - (5/14) log (5/14) bits = 0.94 bits
 H(D, Humidity = High) = -(3/7) log (3/7) - (4/7) log (4/7) = 0.985 bits
 H(D, Humidity = Normal) = -(6/7) log (6/7) - (1/7) log (1/7) = 0.592 bits
 Gain(D, Humidity) = 0.94 – ( (7/14) * 0.985 + (7/14) * 0.592 ) = 0.151 bits
 同様に, Gain (D, Wind) = 0.94 – ( (8/14) * 0.811 + (6/14) * 1.0 ) = 0.048 bits

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

     
 













values(A)v
v

v DH
D

D
DH AD,Gain

[6+, 1-][3+, 4-]

Humidity

High Normal

[9+, 5-]

[3+, 3-][6+, 2-]

Wind

Light Strong

[9+, 5-]
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ID3 による PlayTennis 決定木作成 [2]

Outlook

[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

 根節の属性を選ぶ

 Gain(D, Humidity) = 0.151 bits
 Gain(D, Wind) = 0.048 bits
 Gain(D, Temperature) = 0.029 bits
 Gain(D, Outlook) = 0.246 bits

 次の属性を選ぶ (部分木の根節)
 （葉への道の上で）属性を使いきるか葉の純粋度 = 100% になるまで続ける

 純粋度 = 100% は、一つのラベルしかないということ

 ところで Gain(D, A) < 0 となりうるか?

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No
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再掲: 決定木の学習: 再帰的繰り返し

D13

D12 D11

D10
D9

D4

D7

D5

D3
D14

D8

D6
D2

D1

D13

D12

D11

D10

D9

D4
D7

D5

D3

D14

D8 D6

D2

D1

Outlook

[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

Day Outlook Temperature Humidity Wind PlayTennis? 
1 Sunny Hot High Light No 
2 Sunny Hot High Strong No 
3 Overcast Hot High Light Yes 
4 Rain Mild High Light Yes 
5 Rain Cool Normal Light Yes 
6 Rain Cool Normal Strong No 
7 Overcast Cool Normal Strong Yes 
8 Sunny Mild High Light No 
9 Sunny Cool Normal Light Yes 
10 Rain Mild Normal Light Yes 
11 Sunny Mild Normal Strong Yes 
12 Overcast Mild High Strong Yes 
13 Overcast Hot Normal Light Yes 
14 Rain Mild High Strong No 
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ID3 による PlayTennis 決定木作成 [3]
 次の属性の選択 (部分木の根節)

 約束: 0 log (0/a) = 0
 Gain(DSunny, Humidity) = 0.97 - (3/5) * 0 - (2/5) * 0 = 0.97 bits
 Gain(DSunny, Wind) = 0.97 - (2/5) * 1 - (3/5) * 0.92 = 0.02 bits
 Gain(DSunny, Temperature) = 0.57 bits

 トップダウン再帰

 離散値属性しかないなら, (n) 回分割をすれば終了（n は属性数）

 木のレベルそれぞれで、訓練データを一回スキャン (なぜ?)

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No
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ID3 による PlayTennis 決定木作成 [4]

Humidity? Wind?Yes

YesNo YesNo

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

Outlook?
1,2,3,4,5,6,7,8,9,10,11,12,13,14

[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-] 26

適用範囲を広げるには

 これまでのアルゴリズムでの仮定. その克服

 離散 出力

• 実数値出力も可能

• Regression trees [Breiman et al, 1984]

 離散 入力

 量子化の方法あり

 内節の等式テストの変わりに不等式 を使用する (以前の方形の例)

 規模の拡大

 大規模データベース (VLDB) からの知識発見やデータマイニング (KDD) では重要

 長所: 多くの事例 を対象とするよいアルゴリズムあり

 弱点: あまりに多い属性 を扱うのは難しい

 あると助かる他の耐性

 ノイズのあるデータ (分類ノイズ classification noise  ラベルの間違い; 属性ノイズ

attribute noise  不正確または低精度のデータ) への耐性

 欠測値への耐性

27

Wekaでの例

 Wekaの紹介スライドにあるとおりです。

28

Rにおける決定木

 R には、決定木関連のパッケージとして、 tree、
rpart、 及び rpart を多変量回帰木(multivariate 
regression trees)に拡張させたmvpart がある。

29

分類木の例（tree）
data(iris)
(iris.tr<-tree(Species~.,data=iris))
plot(iris.tr,type="u"); text(iris.tr)

|Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

Sepal.Length < 5.15

Petal.Length < 4.95

setosa

versicolor versicolor

virginica virginica virginica

(iris.tr1<-snip.tree(iris.tr,nodes=c(12,7)))
plot(iris.tr1,type="u");text(iris.tr1)

1) root 150 329.600 setosa ( 0.33333 0.33333 0.33333 )  
2) Petal.Length < 2.45 50   0.000 setosa ( 1.00000 0.00000 0.00000 ) *
3) Petal.Length > 2.45 100 138.600 versicolor ( 0.00000 0.50000 0.50000 )  
6) Petal.Width < 1.75 54  33.320 versicolor ( 0.00000 0.90741 0.09259 )  
12) Petal.Length < 4.95 48   9.721 versicolor ( 0.00000 0.97917 0.02083 )  
24) Sepal.Length < 5.15 5   5.004 versicolor ( 0.00000 0.80000 0.20000 ) *
25) Sepal.Length > 5.15 43   0.000 versicolor ( 0.00000 1.00000 0.00000 ) *

13) Petal.Length > 4.95 6   7.638 virginica ( 0.00000 0.33333 0.66667 ) *
7) Petal.Width > 1.75 46   9.635 virginica ( 0.00000 0.02174 0.97826 )  
14) Petal.Length < 4.95 6   5.407 virginica ( 0.00000 0.16667 0.83333 ) *
15) Petal.Length > 4.95 40   0.000 virginica ( 0.00000 0.00000 1.00000 ) *

|
Petal.Length < 2.45

Petal.Width < 1.75

Petal.Length < 4.95

setosa

versicolor virginica

virginica

library(tree)

deviance=  ii pn log2

30
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分類木の例（tree）

iris.label<-c("S", "C", "V")[iris[, 5]]
plot(iris[,3],iris[,4],type="n")
text(iris[,3],iris[,4],labels=iris.label)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)
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0
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1
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2.
5

iris[, 3]

ir
is

[, 
4]

setosa

versicolor virginica

virginica

iris.color<-c("red","blue","green")[iris[,5]]
plot(iris[,3],iris[,4],col=iris.color)
partition.tree(iris.tr1,add=T,col=2,cex=1.5)

31

回帰木の例（tree）

> library(tree)
> data(cars)
> cars.tr<-tree(dist~speed,data=cars)
> print(cars.tr)
node), split, n, deviance, yval

* denotes terminal node

1) root 50 32540.0 42.98  
2) speed < 17.5 31  8307.0 29.32  
4) speed < 12.5 15  1176.0 18.20  
8) speed < 9.5 6   277.3 10.67 *
9) speed > 9.5 9   331.6 23.22 *

5) speed > 12.5 16  3535.0 39.75 *
3) speed > 17.5 19  9016.0 65.26  
6) speed < 23.5 14  2847.0 55.71 *
7) speed > 23.5 5  1318.0 92.00 *

> plot(cars.tr,type="u")
> text(cars.tr)
> plot(cars.tr,type="u")
> text(cars.tr)
> 

Library(tree)
data(cars)
cars.tr<-tree(dist~speed,data=cars)
print(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)
plot(cars.tr,type="u")
text(cars.tr)

|
speed < 17.5

speed < 12.5

speed < 9.5

speed < 23.5

10.67 23.22

39.75 55.71 92.00

32

回帰木の例（tree）

> plot(cars$speed,cars$dist)
> partition.tree(cars.tr,add=T,col=2)
> 

5 10 15 20 25
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33

回帰木の例（tree）

(cars.tr1<-prune.tree(cars.tr,best=4))
plot(cars.tr1); text(cars.tr1,all=T)

plot(cars$speed,cars$dist)
partition.tree(cars.tr1,add=T,col=2)

|
speed < 17.5

speed < 12.5 speed < 23.5

42.98

29.32

18.20 39.75

65.26

55.71 92.00
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20

40
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80
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00
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34

仮説の評価

 仮説（モデルとも言います。文脈によります）の良
さ・悪さを評価する。

 仮説は、使う

 何らかの意味で「精度」や「信頼性」の高い仮説を用い
たい。

 どんな評価方法がありうるか？

35

学習結果の評価
Precision と Recall の前に

円 円以外

真:

ある仮説
の予測:

円
円以外

36
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TP, TN, FP, FN

円 円以外

真:

円
円以外

TP TNFP

FNある仮説
の予測:

TP: True Positive
TN: True Negative
FP: False Positive
FN: False Negative 

仮説によ
る予測

結果

37

Confusion matrix

真値

P N

仮説の
予測値

P
TP

(True 
Positive)

FP
(False 

Positive)

N
FN

(False 
Negative)

TN
(True 

Negative)

FPTP

TP


Precision

FNTP

TP


Recall

FNTNFPTP

TNTP




Accuracy

38

両者のTradeoff と F-measure

0.0 0.2 0.4 0.6 0.8 1.0

0
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1
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Precision

R
e

ca
ll 












recallprecision

F
11

2
1

1

39

Confusion matrix

真値

P N

仮説の
予測値

P
TP

(True 
Positive)

FP
(False 

Positive)

N
FN

(False 
Negative)

TN
(True 

Negative)

FPTP

TP


Precision

FNTP

TP


Recall FNTNFPTP

TNTP




Accuracy

帰無仮説は、「陽性でない」
（陽性であることを示したいから）

第一種の過誤=棄却した(陽性だと言った)が、それは誤り
第二種の過誤=受理した(陰性だと言った)が、それは誤り

positiveと判定

第一種の過誤

第二種の過誤

TNFP

FP


 FPR

TPFN

FN


 FNR

1-=specificity=TNR=

1-=sensitivity=TPR=
TPFN

TP



TNFP

TN



40

ROC curve

 Receiver operating characteristics
 “ROC”という用語はレーダが開発された当初、操作盤
上にあったノブの名
 http://www.math-koubou.jp/stata/files/r12/est006.pdf

41

0.7

ROC curve

0 1

1

False Positive rate

True
Positive

rate

# true positives
# true positives + # false negatives

0.1

# false positives
# false positives + # true negatives

ROC curve  (“Receiver Operating Characteristics”)

ROC Curves
• 閾値（後述）を変えながら、サンプルの正誤を数える

• area under the curve (AUC) が大きい方がよい

• 異なった学習手法の性能を比較するのに適している

TPFN

FN


 FNR

1-=sensitivity

TNFP

FP


 FPR

1-=specificity

FNTP

TP


Recall

TP

FN

FP

TN

42
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訓練誤差と汎化誤差

 訓練誤差・誤率: 訓練データ学習データに対する、
仮説出力値の、真の出力値に対する誤差・誤率

 簡単に数えることができる。

 未知データに対する誤差・誤率： （訓練データと
同じ母集団から、同じ方法で抽出した）未知デー
タに対する、仮説出力値の、真の出力値に対す
る誤差・誤り率。テストエラーともいう。

43 Elements of Statistical Learning 44

過学習

 over-learning とか over-training と呼ばれる

 学習すべきでないものまで、学習してしまう

 学習すべきでないもの
 学習データに含まれる偏り

 無限集合（真の概念が含む事例は無限個ある）の有限部分集合で
あるため、かならず、偏りがある。

 学習データに含まれる誤り
 現実データにはノイズがある。分類クラスにも属性値にもノイズは存

在する。

 学習してしまう
 学習能力が高いから

 調節可能なパラメータ数が多い

45

偏り

ノイズ

46

再掲: 関数近似の例（ノイズ）

区分線形 全点を通る
4次多項式

2次多項式

データ

パラメータ数 24+3=11 5 3+ノイズ

多分過学習多分過学習？

47

関数近似の applet

 分かりきったことかもしれませんが、デモプログラ
ムを用いて実験してみると、よく分かります。

http://www.mste.uiuc.edu/users/exner/java.f/leastsquares/

48
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決定木における過学習: 例

Temp?

Hot CoolMild

9,11,15
[2+,1-]

15
[0+,1-]

No Yes

11
[1+,0-]

9
[1+,0-]

Yes
ノイズや偶然の規則性に
適合する可能性あり

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

概念 PlayTennis
の Boolean 決定木

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]

Yes

9,11
[2+,0-]

 既出例: 帰納した木

 訓練事例にノイズがあると

 事例 15: <Sunny, Hot, Normal, Strong, ->
• この例は実は noisy である. すなわち、正しいラベルは +
• 以前に作成した木は、これを、誤分類する

 決定木はどのように更新されるべきか (incremental learning を考える)?
 新しい仮説 h’ = T’ の性能は h = T より悪く なると予想される（ノイズに騙されているから！）

Outlook?

Wind?Yes

Sunny Overcast Rain

No

High Normal

YesNo

Strong Light

概念 PlayTennis
の Boolean 決定木

Humidity?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

1,2,8
[0+,3-]

6,14
[0+,2-]

4,5,10
[3+,0-]

49

帰納学習における過学習

 定義

 仮説 h が訓練データ集合 D を過学習する (～にoverfits する) というのは、もし他の仮説 h’ で
errorD(h) < errorD(h’) であるが errortest(h) > errortest(h’) となるものがあること

 原因: 訓練事例が少なすぎる (あまりにも少ないデータに基づく決断); ノイズ; 単なる偶然

 過学習に対応するには?
 予防策

• 過学習が発生する前に対応する

• 重要な relevant 属性(i.e., モデルにとって有用そうなもの)のみを用いる

• 注意: 鶏と卵の問題; 重要性 relevance を予測する尺度が必要

 回避策

• 問題が起こりそうなときに、脇をすりぬける

• テスト集合を確保しておき, 仮説 h がその上で悪くなりそうなときに、学習を停止する

 泳がせ策

• 問題は発生するにまかせ, 発生を検出し, その後回復する

• モデルを作ってみて, 過学習に寄与する要素を発見・除去する (刈る prune)

50

 過学習にどう立ち向かうか?
 予防策

• 重要な 属性を選択 (i.e., 決定木では有用)
• 重要性 の予測: 属性を filter する, または 部分集合選択

 回避策

• 検証集合 validation set を抜き出しておき, h の予測精度 がそれに対し悪化し始めたたら学習を停止

 “最良の” モデル (決定木) の選び方

 上述: 性能を測定するにあたって、訓練データとそれとは別の検証データを用いる

 別法: 最小記述長 Minimum Description Length (MDL): 
最小化せよ: size(h  T) + size (誤分類 misclassifications (h  T))

決定木学習: 過学習の予防と回避

Size of tree (number of nodes)

0        10       20       30       40       50       60       70       80       90       100

A
c

c
u

ra
c

y

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

On training data

On test data

51

決定木学習: 過学習の予防と回避

 基本的なアプローチが２つある

 Pre-pruning (回避): 木を作成する途中で木の生長を止める. 信頼性ある選択をするにたる十分な

データはないと判断されたとき

 Post-pruning (回復): 木を一杯まで構築し節を削除する. 削除するのは, 十分な証拠がないとみな

されるもの

 枝刈りすべき部分木を評価する方法

 Cross-validation: 仮説の有用性を評価するために、予めデータをとりおく (Mitchell 第4章)

 統計的検定: 観測された規則性が偶然起こったものとして捨ててよいかどうかをテストする (Mitchell 
第5章)

 最小記述長 Minimum Description Length (MDL)

• 仮説 T の複雑度の増加分は, 単に(説明しようとしているデータの)例外 を記憶するに必要な記述量よ

り大きいか/小さいか?

• Tradeoff: モデル を記述する versus 残余誤差 を記述する

52

Reduced-Error Pruning

 Post-Pruning, Cross-Validation Approach

 所与のデータを 訓練データ training set と 検証データ Validation set に分割する

 関数 Prune(T, node)
 引数 node を根節とする部分木を除去

 引数 node を葉節とする (そこにある事例には多数派のラベルを付与)

 アルゴリズム Reduced-Error-Pruning (D)
 D を分割する. Dtrain (訓練 training / “growing”), Dvalidation (検証 validation / “pruning”)
 Dtrain に ID3 を適用して, 完全な木 T を作る

 UNTIL Dvalidation で計測した精度が悪化する DO
FOR T 中のそれぞれの内節 candidate

Temp[candidate]  Prune (T, candidate)

Accuracy[candidate]  Test (Temp[candidate], Dvalidation)

T  T’  Temp 中で Accuracy が最良のもの

 RETURN (pruneしおえた) T

53

Reduced-Error Pruning の効果

 Reduced-Error Pruning によるテスト誤差の減少

 節を刈ることによってテスト誤差が減少する

 注:  Dvalidation は Dtrain と Dtest のどちらとも異なる

 賛成論 と 批判論

 賛成: 最も正確な T’ (T の部分木) のうちで最小のものが生成できる

 批判: T を作るのにわざわざデータ量を減らしている

• Dvalidation をとりおくだけの余裕があるか? 

• データ量が十分でなければ, 誤差をなおさら大きくする (Dtrain が不十分)

Size of tree (number of nodes)

0        10       20       30       40       50       60       70       80       90       100

A
c

c
u

ra
c

y

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

On training data

On test data

Post-pruned tree
on test data

54
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Rule Post-Pruning

 しばしば用いられる方法

 これもよく知られたoverfitting 対応策

 C4.5 でその亜種が用いられた. C4.5 は ID3 の派生・後継.

 アルゴリズム Rule-Post-Pruning (D)
 D から T を生成 (ID3 を使用) – 可能な限り D に適合するまで成長させる (過学習も許す)
 T を等価な規則集合に変換 (根節から葉節へ道一つにつき１規則)
 それぞれの規則を, 独立に, 条件をどれでも, 推定精度が改善する限り, 除去することにより刈り込

む(一般化する)
 刈り込んだ規則をソートする

• 推定精度に従ってソートする

• 列に並べて, Dtest に適用する

55

決定木を規則に変換する

 規則の構文

 左辺: 条件 (属性の等式テスト上の連言標準形 conjunctive formula)
 右辺: 分類クラスラベル

 例

 IF (Outlook = Sunny)  (Humidity = High) THEN PlayTennis = No
 IF (Outlook = Sunny)  (Humidity = Normal) THEN PlayTennis = Yes
 …

Yes

Overcast

Outlook?

Humidity?

Sunny

No

High

Yes

Normal

Wind?

Rain

No

Strong

Yes

Light

概念 PlayTennis 
のBoolean決定木

56

決定木における重複

 決定木: 表現上の短所

 決定木は, 一番簡単な表現というわけではない

 ポイント: 属性を重複 replication させる必要がある場合がある

 属性重複の例

 e.g., Disjunctive Normal Form (DNF): (a  b)  (c  d  e)

 (どちらかの) 連言は部分木として重複させないといけない

 部分解

 新しい属性 を作る

 別名 constructive induction (CI)

 Mitchell の第10章参照

a?

b?c?

c?

d?

e?

d?

e?

+-

+

+

-

-

-

-

-

0 1

0 1

0 1

0 1 0 1

0 1

0

0 1
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少しだけ: 決定木の構成的帰納法

 新しい属性の合成

 一つの “+ 節” に到る直前の二つの属性の連言から新しい属性を合成 synthesize する

 別名 feature construction

 例

 (a  b)  (c  d  e)

 A = d  e

 B = a  b

 繰り返し用いると

 C = A  c

 正しさ? 

 計算時間?

a?

b?c?

c?

d?

e?

d?

e?

+-

+

+

-

-

-

-

-

0 1

0 1

0 1

0 1 0 1

0 1

0

0 1

B?

c?

A?-

+

0 1

0 1

0 1
-

+

B?

C?

- +

0 1

0 1
+

58

決定木: 他の話題

 他の機械学習に共通する課題

59

連続値属性

 連続値属性を扱う２つの方法

 離散化

• 実数値属性を, 予め, いくつかの範囲に分ける

• e.g., {high  Temp > 35º C, med  10º C < Temp  35º C, low  Temp  10º C}

 内節を分けるのに, 閾値を用いる

• e.g., A  a によって二つの部分集合 A  a と A > a ができる

• この離散化に際して、情報増分が同様に計算される

 情報増分を最大にする分割はどうやって得るか?
 FOR 連続値属性 A のそれぞれ

事例 {x  D} を x.A に従って, 分割する

FOR 異なったラベルを持つ A の値の順序対 (l, u) それぞれ

閾値の候補として, 中点 mid-point の情報量増分を評価, i.e., DA  (l+u)/2, DA > (l+u)/2

 例

• A  Length: 10 15 21 28 32 40 50
• Class: - + + - + + -

• 閾値のチェック: Length  12.5?  24.5?  30?  45?

60
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多値属性に伴う問題

 問題

 もしある属性が多値であると, Gain(•) はそれを選びやすい (なぜ?)
 例えば、日付 ( 2007/11/01等 ) を属性として用いることを想像してみればわかる!

 一つのアプローチ: GainRatio を Gain の代わりに使用

 SplitInformation: c = | values(A) |  に, ほぼ, 比例

 i.e., 多くの値をもつ属性にハンディを負わせる

• e.g., 仮定: c1 = cDate = n そして c2 = 2

• SplitInformation (A1) = log(n), SplitInformation (A2) = 1

• もし Gain(D, A1) = Gain(D, A2) とすると, GainRatio (D, A1) << GainRatio (D, A2)

 すなわち, GainRatio(•) を用いれば, (分岐数が少ない方への)選択バイアスが 表現できる

     

   
 

  



































values(A)v

vv

values(A)v
v

v

D

D

D

D
AD,mationSplitInfor

AD,mationSplitInfor

AD,Gain
AD,GainRatio

DH
D

D
DHAD,Gain

log
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補足: Gini index

 もう一つの分割の指標

 n は分類・クラスの個数

 Gini(D) は D 内の分布が偏れば偏るほど、すなわち、pure になるほど小さくなる

62

コスト付き属性

 応用分野毎

 医療: 体温検査 のコストは 1000円; 血液検査 1500円; 生検 50000円
• また検査の侵襲性・無侵襲性も考慮する必要あり

• 患者へのリスクも (e.g.,羊水検査)

 他のコスト

• サンプリング時間: e.g., ロボットのソナー (レンジファインダー, etc.)

• 人工物, 生体へのリスク (どんな情報を収集するか)

• 関連する分野 (e.g., 断層装置): 非破壊検査

 低い期待コストでいかに consistent な木を作るか?
 一つのアプローチ: 情報増分 gain を コスト正規化増分 Cost-Normalized-Gain で置き換える

 正規化関数の例

• [Nunez, 1988]:

• [Tan and Schlimmer, 1990]:

但し w はコストの重要性を定める

   
 AD,Cost

AD,Gain
AD,Gain-Normalized-Cost

2



 
 

  
 0,1w

AD,Cost
AD,Gain-Normalized-Cost

w

AD,Gain





1

1-2
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欠測値: 属性値が不明

 問題: 属性 A の値がない事例があるとどうなるか?
 しばしば, 訓練時やテスト時に, 必ずしも全ての属性値が入手できるとは限らない

 例: 医療診断

• <Fever = true, Blood-Pressure = normal, …, Blood-Test = ?, …>

• 値は、本当になかったり, またあっても信頼度が低かったりする

 欠測値: 訓練時 versus 分類時

• 訓練時:ある x  D について A の値が与えられていないとき Gain (D, A) を評価する

• 分類時: A の値を知らずに, 新しい事例 x を分類する

 解: Gain(D, A) の計算の中に推測を入れる

Outlook

[9+, 5-]

[3+, 2-]

Rain

[2+, 3-]

Sunny Overcast

[4+, 0-]

Day Outlook Temperature Humidity Wind PlayTennis? 
1 Sunny Hot High Light No 
2 Sunny Hot High Strong No 
3 Overcast Hot High Light Yes 
4 Rain Mild High Light Yes 
5 Rain Cool Normal Light Yes 
6 Rain Cool Normal Strong No 
7 Overcast Cool Normal Strong Yes 
8 Sunny Mild ??? Light No 
9 Sunny Cool Normal Light Yes 
10 Rain Mild Normal Light Yes 
11 Sunny Mild Normal Strong Yes 
12 Overcast Mild High Strong Yes 
13 Overcast Hot Normal Light Yes 
14 Rain Mild High Strong No 
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欠測値: 対応策

 訓練事例はとにかく使用する. 木を(根節から)辿りつつ作っていくとき

 考慮すべき属性のどれについても, 事例中でもし値が知られていないなら、それを推測する

 その推測は、今いる節に割当てられた事例の知られている値に基づく

 x.A の最もありそうな値を推測する

 第一案: 節 n で属性 A をテストするなら, n を通る事例の A の値でもっとも多いものを用いる

 第二案 [Mingers, 1989]:節 n で属性 A をテストするなら, n を通る事例でx と同じクラスラベルをも

つものの A の値でもっとも多いものを用いる

 推測値を分散させる

 両賭け: 値の分布に従い,推測値を分散させる

 x.A の可能な値 vi の分布に比例して確率 pi を割当てる[Quinlan, 1993]

• 木の子孫に, x の内の pi 分を割当てる. データ数に 3.7個などという値が出現する

• これを用いて Gain (D, A) or Cost-Normalized-Gain (D, A) を計算する

 どのアプローチにおいても, 新事例も同様に分類する
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欠測値: 例
 x.A の最もありそうな値を予測する

 第一案: Humidity = Normal
 第二案: Humidity = High ( No 事例はすべて High)
 (最も Gain の大きなものはどうだろうか？ High: Gain = 0.97, Normal: Gain < 0.97 ) 

 確率で重み付けする
 0.5 High, 0.5 Normal
 Gain < 0.97

 テスト事例: <?, Hot, Normal, Strong>
 5/14 Yes + 4/14 Yes + 5/14 No = Yes

Day Outlook Temperature Humidity Wind PlayTennis?
1 Sunny Hot High Light No
2 Sunny Hot High Strong No
3 Overcast Hot High Light Yes
4 Rain Mild High Light Yes
5 Rain Cool Normal Light Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild ??? Light No
9 Sunny Cool Normal Light Yes
10 Rain Mild Normal Light Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Light Yes
14 Rain Mild High Strong No

Humidity? Wind?Yes

YesNo YesNo

Outlook?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-]
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欠測値: 例
 x.A の最もありそうな値を予測する

 第一案: Humidity = Normal
 第二案: Humidity = High ( No 事例はすべて High)
 (最も Gain の大きなものはどうだろうか？ High: Gain = 0.97, Normal: Gain < 0.97 ) 

 確率で重み付けする
 0.5 High, 0.5 Normal
 Gain < 0.97

 テスト事例: <?, Hot, Normal, Strong>
 1/3   Yes + 1/3  Yes + 1/3   No = Yes
 5/14 Yes + 4/14 Yes + 5/14 No = Yes

Day Outlook Temperature Humidity Wind PlayTennis? 
1 Sunny Hot High Light No 
2 Sunny Hot High Strong No 
3 Overcast Hot High Light Yes 
4 Rain Mild High Light Yes 
5 Rain Cool Normal Light Yes 
6 Rain Cool Normal Strong No 
7 Overcast Cool Normal Strong Yes 
8 Sunny Mild ??? Light No 
9 Sunny Cool Normal Light Yes 
10 Rain Mild Normal Light Yes 
11 Sunny Mild Normal Strong Yes 
12 Overcast Mild High Strong Yes 
13 Overcast Hot Normal Light Yes 
14 Rain Mild High Strong No 
 
 

Humidity? Wind?Yes

YesNo YesNo

Outlook?

1,2,3,4,5,6,7,8,9,10,11,12,13,14
[9+,5-]

Sunny Overcast Rain

1,2,8,9,11
[2+,3-]

3,7,12,13
[4+,0-]

4,5,6,10,14
[3+,2-]

High Normal

1,2,8
[0+,3-]

9,11
[2+,0-]

Strong Light

6,14
[0+,2-]

4,5,10
[3+,0-]
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ところで学習とは

68

Induction （帰納）

 OED (Oxford English Dictionary) によれば
 the process of inferring a general law or printciple from the 

observations of particular instances
 これは、inductive inference のこととする

 inductive reasoning は： the process of reassigning a 
probability (or credibility) to a law or proposition from the 
observation of particular events

69

帰納とは（2）

 帰納とは
データに潜在する規則性を得ること
物体の落下の実験データ → 万有引力の法則
惑星の公転運動 → 楕円運動、面積速度一定、調和

 帰納で得た規則の正しさはどう測るか

70

ID3 による仮説空間探索

 探索問題

 探索の対象は 決定木全部の空間 , すなわちブール関数をすべて表現可能な空間

• Pros: 表現力; 柔軟性

• Cons: 計算量; 巨大, 意味の分からない木も含む

 目的: もっともよい決定木を見出す (最小な consistent な木)
 障害: この木を見出す問題は NP-hard
 Tradeoff

• heuristics の使用(探索の案内役としての目の子)

• 貪欲 greedy アルゴリズムの使用

• すなわち、バックトラックなしの山登り hill-climbing (gradient “descent”)

 統計的学習

 事例の部分集合 Dv の統計的な量 p+, p- に基づく決定

 ID3 では, 全てのデータを使用

 ノイズのあるデータに対してロバスト

... ...

... ...

71

ID3 の帰納バイアス

 探索におけるヒューリスティックは帰納バイアスである

 H はX の冪集合 (全部分集合の集合)

  帰納バイアスなしと言ってよいか?   いや、そうではない…

• 短い木への選好 (終了条件から) がある

• 情報量増分が高い属性を根節に近いところにおくという選好がある

• Gain(•): ID3 の帰納バイアスを体現するヒューリスティック関数

 ID3 の帰納バイアス

• ある仮説への選好をヒューリスティック関数に表現している

• 比較してみる: 仮説空間 H を制限すること(命題論理の正規形に基づく制限: k-CNF, etc.)

 短い木を好むこと

 データに適合する木の中で最短のものを選ぶ

 オッカムの剃刀バイアス: 観測を説明する最短の仮説をとれ

学習時に用いる、データ以外の仮定。
それにより、こちらの仮説がより良い、
この仮説はとらない、この仮説はとる
ということが決まる
これがないと、データを説明する仮説
が多数（無限に）あって、結論が得ら
れない

いや、しかし、データ以外
の情報を使って、仮説を選
択するのはまずいのでは
ないか？

もし、バイアスが避けえな
いとしたら、どういうバイア
スがよいのか？

72
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学習とバイアス

 バイアス: 仮説間に順位があるとき、その順位

 同時に複数個の仮説をみたときの、選好順位

 一度に一個ずつ見るときの、探索順序

 データに適合する仮説は、一般に、多量にある
ので、学習するにはバイアスが必要

 仮説を一個選択するのではなく、複数個の仮説を用
いる場合でも、「データに適合する仮説をすべて用い
る」のではない限り、バイアスが必要である。

学習：

データ → 仮説

いや、しかし、データ以外の情報を使って、
仮説を選択するのはまずいのではないか？

もし、バイアスが避けえないとしたら、どうい
うバイアスがよいのか？

73

Occam の剃刀

 人口に膾炙しているのは
 Entities should not be multiplied beyond necessity.

 Bertrand Russell によれば
 It is vain to do with more what can be done with fewer.

 最も普通の解釈
 Among the theories that are consistent with the observed 

phenomena, one should select the simplest theory.

74

Isaac Newton の言葉

 We are to admit no more causes of natural 
things than such as are both true and 
sufficient to explain the appearances. To this 
purpose the philosophers say that Nature 
does nothing in vain, and more is in vain 
when less will serve; for Nature is pleased 
with simplicity, and affects not the pomp of 
superfluous causes.

75

オッカムの剃刀: ある選好バイアス

 帰納バイアス2つ: 選好バイアス preference biases と言語バイアス language biases
 選好バイアス

• 学習アルゴリズムに（普通は暗黙的に）組み込まれている

• 言い換えれば: 探索順序の規定

 言語バイアス

• 知識 (仮説) の表現に（普通は暗黙的に）組み込まれている

• 言い換えれば: 探索空間の制限

• 別名 制限バイアス

 オッカムの剃刀 Occam’s Razor: 賛成意見

 短い仮説の方が、長い仮説に比べ、個数が少ない

• 例えば, ビット列で考えれば, 長さ n のものは n + 1 のものに比べ半数, n  0.

• 短い仮説が、もしデータにぴったり合ったとしたら、偶然とは考え難い

• 短い仮説は、個数が少ないので、説明できる現象の数が少ない

• 長い仮説 (例: 200 個の節を持つ木,かつ |D| = 100) の場合には、偶然である可能性が高い

• いずれかの木がデータにぴったり合う。どれに合うかは偶然であるが、どれかに合うこと自体は当然。

 得るものと捨てたもの

• 他の条件が同一であれば, 複雑なモデルの汎化能力は単純なモデルほどではない

• あとになってもっと柔軟な(微調整可能な)モデルが必要になることはないと仮定 76

オッカムの剃刀と決定木: 二つの問題

 オッカムの剃刀 Occam’s Razor: 反対意見

 仮説空間 H に依存して size(h) が決まる。同じ h でも H が異なると size(h) が異なる。

 「小ささ」を選好することへの疑問: “少ない” ことは正当化にならない

 オッカムの剃刀 Occam’s Razor は Well-Defined か?
 内部の知識表現 knowledge representation によってどの h が “短い” かがきまる --- 恣意的?

 例えば, テスト “(Sunny  Normal-Humidity)  Overcast  (Rain  Light-Wind)” は一個？

 答: 表現言語を固定; 十分長いところでは、長い仮説は、内部表現によらず、やっぱり長い

 反論：答えになっていない。実際には「短い仮説」に関する議論が重要

 「短い仮説」であって、どうして他の「小さい仮説空間」ではないのか?
 小さい仮説集合を定義する方法はいろいろとある. 

 選好バイアスで用いる size が何であっても, 適当に基準 S を選べば size(h) をその限界内に制限

することができる (i.e., “S に合致する木のみ受理する”)

• e.g., 節の個数が素数であって, 文字 “Z” で始まる属性を用いている木

• なぜ「小さな木であって, (例えば) A1, A1, …, A11 を順番にテストするもの」ではないのか?

• size(h) に基づいて小さな仮説集合を定義することに、特別の意味があるのか?

 参考: Chapter 6, Mitchell’s Machine Learning
77

エピクロスの多説明原理

 ギリシャの哲学者 Epicurus
 If more than one theory is consistent with the 

observations, keep all theories (Principle of 
Multiple Explanations).

 その一つの理由： 一つを他から選び出す理由が
ない
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