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McCulloch and Pitts

s Warren S. McCulloch and Walter Pitts (1943) " A logical
calculus of the ideas immanent in nervous activity", Bulletin of
Mathematical Biophysics, 5: 115-133.
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BB 18: McCulloch and Pitts

Warren S. McCulloch and Walter Pitts (1943) " A logical
calculus of the ideas immanent in nervous activity", Bulletin of
Mathematical Biophysics, 5: 115-133.
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Hebb Bl

= Donald O. Hebb (1949) “The Organization of Behavior”,
New York: Wiley

w “What fires together, wires together”
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Hii-713#8:&: /\—tT+aY Perceptron

= Rosenblatt, F. (1957). “The perceptron: A perceiving and recognizing
automaton (project PARA).”, Technical Report 85-460-1, Cornell
Aecronautical Laboratory.

= Rosenblatt, F. (1962). “Principles of Neurodynamics.”, Spartan Books, New
York.

FIGURE 1. The one-layer perceptron analyzed by Minsky and Papert. (From Perceptrons
by M. L. Minsky and S. Papert, 1969, Cambridge, MA: MIT Press. Copyright 1969 by 5
MIT Press. Reprinted by permission.)
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