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情報意味論 (第7回)
モデル選択

慶應義塾大学理工学部

櫻井 彰人

モデル選択

• あるデータを説明する、複数個の（確率的）モデルがある時、その中
の一つを選択すること。「最良の」モデルを選びたい

• 「最良」とはどういうことか

• それを実現するにはどうするか？

• 最良とは、未知のデータに対して（他のモデルより）、誤差の小さい
予測をする。

• 方法：「未知のデータに対する誤差」を推定する

– 実データを用いる方法
• Validation dataset を用いる方法

• 学習データの一部を用いる方法

– 理論的に予測する方法

本項の内容

• AIC

• MDL

汎化能力

• 汎化能力は、（学習データではなく）未知データに
対して正解することができる能力をいう. 

• 学習データは、一般に、（分類なら）クラス値の誤
り、（回帰なら）出力値の誤り（これらを、略してノ
イズということにしよう）で劣化している。

• 従って、データへの当てはまりの良さ（goodness 
of fit to Data, 長いので GOFD と略）には、規則
性だけでなく、ノイズへの当てはまりが反映する
ことになる.

汎化能力

• GOFD 
= 規則性への当てはまり (汎化能力)

+ 規則性からのずれへの当てはまり
(過学習)

汎化能力

モデルの複雑性低い 高い
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汎化能力

• モデル複雑度が高いほど、過学習すること
になる.

モデル複雑度低い 高い
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誤差小
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汎化誤差

誤差
（汎化誤差）
（学習誤差）

モデルの複雑性

学習誤差

テスト誤差
汎化誤差

Bias-variance decomposition

ܮ ଴ݔ ൌ ܧ ܻ െ	 መ݂ ଴ݔ
ଶ
ܺ ൌ ଴ݔ

仮定 ܻ ൌ ݂ ܺ ൅ ߝ where ߝ ∼ ܰሺ0, ఌଶሻߪ

ܧ は ߝ に関する期待値

଴ݔ は未知の値
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Bias-variance decomposition
学習データセット ܦ に関する期待値を計算する
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ところが、右辺第3項は
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መ݂ が ܦ に依存
している

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

2
.0

h1$mids

h
1

$d
e

n
si

ty

Bias-variance decomposition
結局 ஽ܧ ܮ ;଴ݔ ܦ は

ఌଶߪ ൅ ஽ܧ ݂ ଴ݔ െ ஽ܧ መ݂ ;଴ݔ ܦ
ଶ
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ノイズ

݂ ଴ݔ の予測値の、 ܦ
を振った時の期待値

bias の二乗（の期待値）

݂ ଴ݔ の真値

variance

݂ ଴ݔ の予測値。
ܦ に依存
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簡単な例 （20事例）
y = 1 + 2*sin(1.5*x)+N(0,0.2)
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推定値の密度分布 at x=5

真値にノイズ（ N(0,0.2) ）
を乗せた値の密度分布

推定値の平均値
(約5.1)
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注: at x=3; 高次元では、外れた点が多い

予測誤差 vs. 複雑度

モデルの複雑度 大

予測誤差（二乗）

bias2

variance

bias2+variance

noise_variance

未知データに対する予測二乗誤差：
bias2+ variance+ noise_variance

High bias

Low bias

Low 
variance

High 
variance

理想

現実

蛇足: 推定量が２次元だとして書いた図

汎化能力

• モデルの自由度が高ければ、よいGOFDが得られる（当
てはまりがよい）.

• 学習データへの当てはまりがよいことは必要である, しか
し、それだけでは、テストデータへの当てはまりがよいこ
とにはならない. すなわち、隠れた構造を獲得したとこに
はならない. 

• しかし、当てはまりがよいことは、更なる検討を進める上
で必要である.
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汎化能力

• 開発された手法の多くは、未知データによく当てはまるモデル（多く
の場合、パラメータ）を探す方法であり、必ずしも真のモデルを探す
方法ではない.
– 真のモデルが同定できるほどに多くのデータがあることは、まず、ない. 
– 多くのデータがあっても、ノイズで汚されることはある.

– 真のモデルが同定できるには、ノイズがノイズであることが分かるほど、
多くのデータが必要.

– （真のモデルはないかもしれない。しかし）万が一あったにしても、真の
モデルは、考慮中のモデル集合（仮説集合）にはないかもしれない.

• だからといって、真のモデルがいらないと言っているわけでは、勿論、
ない.

モデル選択

• 考えるべきは、汎化能力の有無である.

• 本質（いい加減ですが）:
• GOFD = 規則性への当てはまり (汎化能力)

+ 偏りへの当てはまり (過学習)
• 汎化能力 = GOFD – 過学習

• 汎化能力  GOFD – 複雑度

• よって, –汎化能力  – GOFD + 複雑度

AIC（赤池の情報量規準）

• Akaike Information Criterion (AIC)
• 赤池氏自身は An Information Criterion と命名し

た。他の情報量規準が提案されるに従い、上記の
名前が普通に用いられるようになった

• AIC は汎化能力のなさの測度, 従って, 大
きすぎると都合が悪い.

Hirotugu Akaike. Information theory and an extension of the maximum likelihood 
principle. Proc. 2nd International Symposium on Information Theory (B. N. Petrov 
and F. Csaki eds .) Akademiai Kiado, Budapest, (1973) 267-281. 

Hirotugu Akaike. Determination of the number of factors by an extended maximum 
likelihood principle. Research Memorandum 44, Inst. Statist. Math. (March 1971).

最初はこ
ちら

AIC

• AIC = -2 log L(    |D) + 2k
– D は学習データ

– は最尤推定量 (MLE)

– L は尤度（ L(    |D) = Prob(D|    ) ）

– k はモデルを規定するパラメータの個数

– log は自然対数

̂

̂ ̂
̂

AIC

• AIC = -2 log L(   |D) + 2k

当てはまりの悪さ（誤差）:
パラメータ数が増えると
一般に減少する.

複雑度への罰金:
パラメータ数が増加
すると増加する.

̂

AIC

• AIC はパラメータ数を用いて、モデルの複
雑度を測る. 

• （パラメータ→確率という）関数の形（に関
する複雑度）は考慮していない

「関数の形」の複雑度とは何か？
そもそも「関数の形」とは何か？
しかし、考えたくはなる
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AIC

• AIC最小化 はモデル集合の中から、真の
モデルとの距離を平均的に最小化するモ
デルを選択する.
– 今持っている学習データについて、今のモデ
ルについては、何も言っていない

• AIC は、真のモデルに関する情報は用い
ない.

モデル間の距離

近い 遠い

真のモデル

KL-情報量

• KL-情報量(Kullback-Leibler divergence)は、二つの分布間の距離の
ような量である（数学的な距離ではない。そこで、擬距離と呼ばれる）。

• 二つの分布を と とするとき（ とする）

• の性質：

• 対称性はない。三角不等式も満足しない
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注: クロスエントロピー

AICの導出手順（ラフスケッチ）
• 真の分布 と推定モデルܲሺߠ෠ሻ	の間のKL-情報量ܦሺܳ, ܲሺߠ෠ሻሻ	

を最小にするモデルを選びたい。

• ところが、データから得られるのは、経験分布 ෠ܳ であり、これか

らはܦሺܳ, ܲሺߠ෠ሻሻ	が計算できない。

• そこで、経験分布 ෠ܳ 	 と推定モデルの間のKL-情報量ܦሺ ෠ܳ , ܲሺߠ෠ሻሻ	
から、ߠ෠の漸近正規性を用いてܦሺܳ, ܲሺߠ෠ሻሻ	 の平均を評価した

• その結果は、

• AICは、上記の2ܰ倍であり、次式で与えられる。

Q

の推定量 ＝ ))ˆ(,ˆ( PQD +
N

k

kxpAIC
N

i
i 2)ˆ;(log2

1

 




))ˆ(,( PQD

漸近正規性: 漸近的に正規分布に従う

ܳ

ܲሺߠመሻ
෠ܳ

推定したい
,ሺܳܦ ܲሺߠመሻሻ	

既知	ܦሺ ෠ܳ, ܲሺߠመሻሻ

AICの導出(ラフスケッチ1)

• 真の分布 と推定モデル の間のKL-情報量
を最小にするモデル i.e. を選びたい。

ܦ ݃; ݂ ൌ ௚ሾlogܧ ݃ሺܺሻ/݂ሺܺ; ሻሿߠ

ൌ ௚ܧ log ݃ ܺ െ ௚ሾlogܧ ݂ሺܺ; ሻሿߠ

g: 真の分布
f: 近似分布

෠௕௘௦௧ߠ ൌ argminఏ ܦ ݃; ݂

Q )ˆ(P ))ˆ(,( PQD
̂

ൌ argmaxఏ ௚ܧ log ݂ ܺ; ߠ

AICの導出(ラフスケッチ2)
• ところが、データから得られるのは、経験分布 であり、これか

らは を計算できない。

• そこで、経験分布 と推定モデルの間のKL-情報量

から、 の漸近正規性を用いて の平均を評価した

Q̂
))ˆ(,( PQD
Q̂ ))ˆ(,ˆ( PQD

))ˆ(,( PQD̂

መெ௅ߠ ൌ argmaxఏ ௚ොܧ log ݂ ܺ; ߠ ൌ argmaxఏ 	
1
ܰ
෍log ݂ሺݔ௜; ሻߠ

ே

௜ୀଵ

෠௕௘௦௧ߠ ൌ argminఏ ܦ ݃; ݂

ൌ argmaxఏ ௚ܧ log ݂ ܺ; ߠ

maxఏ ௚ܧ log ݂ ܺ; ߠ ൌ maxఏ ௚ොܧ log ݂ ܺ; ߠ ൅補正項

ൌ maxఏ
1
ܰ
෍log ݂ ;௜ݔ ߠ

ே

௜ୀଵ

൅補正項

g: 真の分布 Q
f: 近似分布 P()
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෠ெ௅ߠ ൌ argmaxఏ ௚ොܧ log ݂ ܺ; ߠ ൌ argmaxఏ 	
1
ܰ
෍log ݂ሺݔ௜; ሻߠ

ே

௜ୀଵ

AICの導出(ラフスケッチ3)
• そこで、経験分布 と推定モデルの間のKL-情報量

から、 の漸近正規性を用いて の平均を評価した

Q̂ ))ˆ(,ˆ( PQD
))ˆ(,( PQD̂

maxఏ ௚ܧ log ݂ ܺ; ߠ ൌ maxఏ ௚ොܧ log ݂ ܺ; ߠ ൅補正項

ൌ maxఏ
1
ܰ
෍log ݂ ;௜ݔ ߠ

ே

௜ୀଵ

൅補正項

௚ܧ log ݂ ܺ; ෠௕௘௦௧ߠ ൎ ௚ොܧ log ݂ ܺ; ෠ெ௅ߠ ൅ െ
݇
ܰ

෠௕௘௦௧ߠ ൌ argmaxఏ ௚ܧ log ݂ ܺ; ߠ

最尤推定された統計モデル群（の中のモデル同士）を比
較する情報量基準を考える。

g(y): 真のモデル、真の分布（未知）
f(y): 推定した一つの統計モデル

 
 

i

i
k

i
i

g

f

g
g

dyygyfyg

yfygEfgD

2
1

log

)()(/)(log
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Kullback-Leibler divergence

１

２

0);( fgD
fgfgD   iff0);(

AICの導出（スケッチ）: 改めて

つまり、KL情報量の値が小さければ、推定したモデルと
真のモデルとが近いことになる

fgfgD   iff0);(

しかし、現実のデータのモデル化には、KL情報量の値を
用いることはできない。真のモデルが未知だからである。

しかし、（真のモデルから得られた）データはある。

 
   )(log)(log

)(/)(log);(

yfEygE

yfygEfgD

gg

g





g(y) は知らないので計算はできない。
しかし、f によらない一定値

この値が大きれば大きいほどKL情
報量値は小さくなる（「この」値は負
なので、0に近いほどよい)

つまり、右辺第二項を最大にするようなモデル f
を選べばよいことになる

   



 dyygyfyfEg )()(log)(log

 )(log)(log
1

1

yfEyf
N g

N

i
i 


大数の法則

記号の定義

g(y): 真のモデル、真の分布（未知）
f(y|): 推定した一つの統計モデル

),...,( 1 NxxX  データ、学習データ、訓練データ

)(ˆˆ X  データ X に基づくパラメータθの最尤推定量





N

i
ixfl

1

)|(log)(  （対数尤度）を最大にするθ

 )|(log yfEg を最大にするθ 真の分布に最近接する分
布を与えるパラメータ0

この値は知りようがない
ので、途中の計算に用い
るのみ
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したがって、
ଵ

ே
݈ ෠ߠ െ ௞

ே
は、最尤モデルの平均対数尤度

௚ܧ log ݂ሺߠ|ݕ෠ሻ の不偏推定量になっている。

赤池情報量基準は、これを െ2ܰ 倍して、

AIC = െ2݈ሺߠ෠ሻ ൅ 2݇
= 2（最大対数尤度）+2（パラメータ数）

と定義する

MDL: Minimum Description Length

• 次のデータ（ビット列）が与えられていると
しよう:

– 0001000100010001000100010001

– 0111010011010000101010101011

MDL

• これらは、プログラムを使って、次のよ
うに符号化できる:

– 0001000100010001000100010001
• 7.times{ print "0001" }

– 0111010011010000101010101011
• puts("0111010011010000101010101011")

MDL

• データを圧縮するのに、規則性を活用する
ことができる.

• データがより規則的であるほど、一般には
符号化方法に依存するが、「プログラム」
は短くなる.
– 符号化方法は、理論としては、それほど問題
にならない（符号化法に依存する項は定数で
抑えられる）.

MDL

• この「プログラム」をモデルだと考えよう.
• データ中の規則性を最もよく捉えたプログ
ラムが、最短のプログラム、すなわち、最
短の符号となる.
– 0001000100010001000100010001

• 7.times{ print "0001" }

– 0111010011010000101010101011
• puts("0111010011010000101010101011")

MDL

• データの規則性が獲得できれば、次に来る
データが予想できる。すなわち、よい汎化能
力が獲得できる.

• すなわち、記述長最小のモデルを見つけるこ
とができれば、それは予測能力が最もあるモ
デルということになる.

0001000100010001000100010001
7.times{ print "0001" }
Puts("0001000100010001000100010001")
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Occam の剃刀

• 人口に膾炙しているのは

– Entities should not be multiplied beyond necessity.

• Bertrand Russell によれば

– It is vain to do with more what can be done with 
fewer.

• 最も普通の解釈

– Among the theories that are consistent with the 
observed phenomena, one should select the 
simplest theory.

Occam の剃刀: 蛇足
• もっと以前から言われていたといわれる。表現も複数ある。

– Wikipedia参照

– 最近であれば "The philosophy of John Duns Scotus" の第8.2節
– 古ければ、"The Myth of Occam's Razor" Mind, 27(107), 345-353 

(1918)

• Albert Einstein: "Theories should be as simple as it is, but not 
simpler." 

• 残差があるときは単に「単純に」とはいえない

• 「仮定」を入れても、それにより複数の現象が一つの理論で説明可
能となるなら、これも単純化
– 例: 未だ見えなかった分子による、現象の説明

• 単に「概念の個数」だけを数えるのでは、誤る。理論全体の長さを考
えするべき
– そして、残差の「長さ」も

最小記述長(minimum description length)

)|()(minarg
21

hDLhLh CC
Hh

MDL 


誤分類データの個数記述する符号の長さ

h が所与のとき、D
を記述するビット数

ex. 決定木を記述
するビット数

このままでは、使えない。使うようにした方法がある
1. Rissanen による統計的MDL
2. Kolmogorov/Chaitin のプログラム複雑度に基づくMDL
であり、Lin & Vitanyi グループによるもの

• Occam’s razor: “最短仮説を選べ” MDL: 次を最小化する仮説を選ぶ

)()|(maxarg hPhDPh
Hh

MAP




最小記述長 符号的解釈

)(log)|(logminarg 22 hPhDP
Hh




)()|(minarg
12
hLhDL CC

Hh




蛇足: 確率と符号長

• 有限または可付番無限集合 X を考える

– X の符号 C(x) とは

• X から Un>0{0,1}n への1-to-1 写像

• LC(x): 符号C を用いた時の符合長（ビット）

– P: X 上で定義した確率分布

• P(x):  x の確率

• 観測値の系列（通常は iid） x1, x2, …, xn: xn

ܲ ௡ݔ ൌ ∏ ܲ ௜ݔ
௡
௜ୀଵ

蛇足:確率と符号長: 接頭符号（語頭符号）

• 接頭符号: 瞬時復号可能な符号の例

– どの符号も他の符号の語頭にはなっていない

a 0

b 111

c 1011

d 1010

r 110

! 100

http://www.cs.princeton.edu/courses/archive/spring04/cos126/
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蛇足: 確率と符号長: 最適符号

• ある符号 C の符号長の期待値

– 下界: 

• 最適符号

– 瞬時復号可能な符号の中で期待符号長が最小

– 仮に分布 P が与えられた時、どう設計せればよいか?
• Huffman 符号





Xx

CCP xLxPxLE )()())((





XxXx

xPxPxPxPxH ))(log)(()(log)()( 22

蛇足: 確率と符号長: ハフマン符号

• Huffman 符号

http://star.itc.it/caprile/teaching/algebra-superiore-2001/

蛇足: 確率と符号長: 有限個数

• {1, 2, …, M} の符号語を設計するには?
– 一様分布を仮定すれば: それぞれの数に 1/M

– ~logM ビット

蛇足: 確率と符号長: 無限集合なら

• 正整数すべての符号を設計するには?
– それぞれの k について

• まず先頭に 個の0をおき

• 次に一個の 1 をおき

• そして k を符号化する。ただし の
符号

• 長さは合計 ~ 2logk + 1 ビット

– 勿論、改善は可能…

 klog

  klog2,...,1

蛇足: 確率と符号長: 双対性(?)
• P を X 上の確率分布としよう。そうすると X に対す
る符号 C で次の条件を満たすものがある:

• C を X 上の即時復号可能な符号とする. そうすると
確率分布 P で次の条件を満たすものがある:

)(log)( xPxLC 

 )(log)( xPxLC 

)(log)( nn
C xPxL 

MDL: 次を最小化する仮説を選ぶ

)()|(maxarg hPhDPh
Hh

MAP




再掲: 最小記述長 符号的解釈

)(log)|(logminarg 22 hPhDP
Hh




)()|(minarg
12
hLhDL CC

Hh



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統計的MDL

• 統計的な状況では、すなわち、データが分
布する場合、MDL原理は:

 


 dI
Nk

xfMDL )(detln
2

ln
2

)ˆ|(ln

当てはまりの悪さ（誤差）

パラメータ数の多さ
に対する罰金

確率分布形に依存
する罰金

J.Rissanen, Modeling by shortest data description. Automatica, vol. 14 (1978), pp. 465-471. 
J.Rissanen, Fisher information and stochastic complexity. IEEE Trans. Information Theory,
vol. 42 (1996), pp. 40-47. 

MDL Reading http://www.mdl-research.org/reading.html

MDL規準の導出
• 情報の符号化を行うために、はじめに情報源の確率分布のパラメータ

（正規分布の平均と分散など）を推定する。

• 推定した確率分布に従って、データの符号化を行う。

• （１）符号化したデータと、（２）データの符号化に用いた確率モデルのパ
ラメータを適当な方法で符号化したもの、の両者を合わせたものが、求
める記述長である。

• 確率モデルを とする。

• 情報源からのN個の観測データを とし、これらを用いたパ
ラメータの最尤推定量を とする。

• このときの（１）最適に選んだ符号化データの長さは、

);( Xp

NXXX ,,, 21 

),,,(ˆˆ
21 NXXX  


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
N

i
i

N

i i

Xp
Xp 11

)ˆ;(log
)ˆ;(

1
log 



MDL規準の導出
• 次に（２）確率モデルのパラメータの符号化に必要なビット長を推定する。

• モデルのパラメータは連続値であるので、その符号化のために離散化して、
近似することを考える。

• 推定されたパラメータは、その標準偏差程度、真の値から離れている可能
性がある。そのため、離散化の幅は、標準偏差程度とするのが妥当。（離
散化の幅が大きすぎると、近似精度が悪くなる。一方、離散化の幅が小さ
すぎると、パラメータの記述長が長すぎる。このトレードオフをちゃんと計算
すると、標準偏差値程度となる）

• パラメータを１変量とすると、その推定量 の標準偏
差は、そのサンプル数Nの平方根に反比例する。

• パラメータ数を とすると、その標準偏差は となる。

• 全体を１として、その中から、標準偏差で区分けした点の一つを指定するの
に必要な情報量は、 の一様分布に従う情報源からの1つの標本
の符号化長 となる。

),,,(ˆˆ
21 NXXX  

k )1( 2kNO

Nk log2

21 kNp 

MDL規準の導出

• （１）、（２）を合計したものが、最小記述長となる。すなわち、

となる。ここで、Nはデータ数、 はパラメータ数である。

N
k

XpMDL
N

i
i log

2
)ˆ;(log

1

 




k

AICとMDLの比較
• AICとMDLを比較する。

• 第2項の補正項を比べると、Nが大きい場合にはMDLの方が大きくなる。
このため、MDLはAICに比べて、パラメータ数が多いモデルが選びにくく
なっている。逆に言えば、同じデータにたいしてはMDLの方が小さいモデ

ルを選ぶ傾向があると予想される。（「情報理論の基礎」村田昇著、サイエ
ンス社から引用）

kXpAIC
N

i
i 2)ˆ;(log2

1

 




NkXpMDL
N

i
i log)ˆ;(log22

1

 




これが比較的簡単にわかるのは、Bayesian network を学習するときである。
Wekaで試してみるとよい


