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どこから生まれてきたか？

 実問題の共通課題 : 
 複雑性

 不確実性

グラフ理論確率論

ベイジアン
ネットワーク

不確実性
モデルの整合性

学習

複雑性→モジュール性
分かり易いインターフェイス

汎用アルゴリズム
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定性的要素: 
有向無閉路グラフ directed acyclic 

graph (DAG)
 ノード – 確率変数. 
 エッジ –非「条件付独立」関係

定量的要素: 
条件付確率分布の集まり
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条件付確率を用いた、結合確率のコンパクトな表現

あわせて:
ある確率分布の因数分解(?. 確率
分布の積に分解)

Figure from N. Friedman

何か？ なぜ役立つか？

 グラフ構造があるので
 知識をモジュール化して表現できる

 推論・学習に、局所的かつ分散的アルゴリズムが使える

 直感的な (場合によっては因果的な) 解釈が可能

 結合確率 P(X1,…,Xn) をそのまま表現するより、
指数関数的に少ないパラメータで、表現可能
=>
 学習に必要なデータ数(sample complexity)が少なくてすむ

 推論に必要な時間(time complexity)が少なくてすむ
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 事後確率推定
 証拠・現象 evidence から発生した事象 event の確率を推定

 最も可能性が高い説明
 証拠・現象を説明するシナリオ

 合理的な意思決定
 期待成果を最大化

 情報の価値

Earthquake

Radio

Burglary

Alarm

Call

Figure from N. Friedman

何に使うか？

これは、全確率変数の結合確率
が分かっていればできること

これは、因果関係的な解釈がで
きる場合

これは、全確率変数の結合確率
が分かっていればできること

応用事例

 “Microsoft’s competitive advantage lies in its expertise in 
Bayesian networks”
-- Bill Gates, LA Times より, 1996

 MS Answer Wizards, (printer) troubleshooters

 医療診断

 遺伝子系統解析

 音声認識 (HMMs)
 遺伝子配列分析

 Turbocodes (通信路の符号化) 
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Figure from N. Friedman

実例: Alarm

分野 domain: ICU でのモニター

 37 変数

 509 パラメータ

… naïve には 237

A Logical Alarm Reduction Mechanism
Microsoft  Print Troubleshooter 8

MammoNet

http://www.mcw.edu/midas/images/mammo.model.gif
http://www.mcw.edu/midas/mammo.html 9

状況に応じた映画推薦
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確率の変形規則…

 ベイズ規則 :

 独立性 iff :

 チェーン規則 : 

 周辺化 marginalize :
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BN の形式的定義

 DAG :
有向無閉路グラフ directed acyclic graph

 ノード : 
各ノードは確率変数。ある順序がある

 エッジ : 
エッジの出る側は入る側の親と呼ぶ。
子ノードには、親ノードを条件とする条件付確率表
（CPT）が定義されている。
各エッジは２変数間に直接的な関係がありうること
を示唆している。正確には、「条件付独立関係があ
る」とは言えないことを示している
方向は、因果関係があれば、原因→結果、なけれ
ば、任意。ノード順序に矛盾しない

 CPTs : 
条件付確率表 : Pr( X | pa(X) )
右図 : Pr( C | A, B ), Pr( D | A ), Pr(E|C,D)

 事前分布 a priori distribution : 
親のないノードすべてに
右図 : Pr( A ),  Pr( B )

全変数の結合確率は、上記の条件付確率の積で
表される
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DAG

A

B

C D

各ノードは確率変数 ノード X からノード Y へのエッジ
があるとき,  X は Y の親ノードで
あるという. 右図: A は B の親

“非公式” には, ノード X から
ノード Y へエッジがあれば,  X
は Y に直接の影響がある
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条件付確率表 CPT
各ノード Xi には条件付確率
表 P(Xi | Parents(Xi)) があり, 
親ノードの当該ノードへの影
響を表現する

表中のパラメータが条件付
確率である (CPTs)

A

B

C D

 
)()|()|()|(

,,,
APABPBCPBDP

ABCDP


false 0.6
true 0.4

A

false true
false 0.01 0.7
true 0.99 0.3

A

B

P(B|A)

false true
false 0.02 0.05
true 0.98 0.95

B

D

P(D|B)

false true
false 0.40 0.90
true 0.60 0.10

B

C

P(C|B)
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親ノードが B であるノード C, 
の条件付確率表

k 個の親がブール変数（2値変数）であるブール値変数のCPTの
要素数は 2k * 2 = 2k+1 となる

親ノード（左図ではB）の値のすべて
の組み合わせについて, P(C=true | B) 
と P(C=false | B) の和は1 とならない
といけない

条件付確率表 CPT

false true
false 0.4 0.9
true 0.6 0.1

B

C

B

C

ここには直接の親ノードしか現れない
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BNの定義 (まとめると)

BN の構成要素: A

B

C D

1. 有向無閉路グラフ
DAG directed acyclic 
graph

2. 各ノードに付随する条件付確率表

3. 全変数の結合確率は、

各ノードに付随する条
件付確率の積

 
)()|()|()|(

,,,
APABPBCPBDP

ABCDP


false 0.6
true 0.4

A
false true

false 0.02 0.05
true 0.98 0.95

B

D

P(D|B)
false true

false 0.40 0.90
true 0.60 0.10

B

C

P(C|B)
false true

false 0.01 0.7
true 0.99 0.3

A

B

P(B|A)

)Pr()|Pr(),|Pr(),,|Pr( AABBACCBAD 
もし構造がなければ
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補足: naïve Bayes との比較
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BN の特徴

主たる２つ:
1. 変数間の条件付独立の関係をグラフ構

造で表現する

2. 変数間の結合確率をコンパクトに表現す
る

いろいろの変数間の結合確率・条件付確
率が、コンパクトに表現できる

自分の親（エッジで直接繋がっている）と親以
外の先祖（直接はつながっていない）とを分け
て考え、自ノードは親ノードを条件として親以外
の先祖ノードに対し、条件付独立
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計算例

先ほどの例で次の結合確率を計算する:

P(A = true, B = true, C = true, D = true)
= P(A = true) * P(B = true | A = true) *

P(C = true | B = true) * P( D = true | B = true) 
= (0.4) * (0.3) * (0.1) * (0.95)

A

B

C D

例題が簡単すぎて、あまり簡単にならないが、、、
19

別の計算例

)Pr()|Pr(),Pr( bRbRaWGbRaWG 

 
b

bRaWGaWG ),Pr()Pr(

)Pr(

),Pr(
)|Pr(

bWG

bWGaR
bWGaR






Rain

Wet
Grass

Rain &
WetGrass

Rain

Wet
Grass



周辺化

/

Rain Pr(Rain)
F 0.5
T 0.5 Rain Wet Grass Pr(WetGrass, Rain)

F F 0.50
F T 0.00
T F 0.05
T T 0.45

WetGrass Pr(WetGrass)
F 0.55
T 0.45

因果関係ではなく、相関関係
または
事後確率分布の表現

F T
F 1.0 0.1
T 0.0 0.9

Wet Grass

Rain
Pr(WetGrass|Rain)

F T
F 0.91 0.0
T 0.09 1.0

Rain

Wet Grass
Pr(Rain|WetGrass)

他の例 : Water-Sprinkler

),|Pr()|Pr()|Pr()Pr(),,,Pr(

),,|Pr(),|Pr()|Pr()Pr(),,,Pr(

SRWCSCRCWSRC

SCRWCRSCRCWSRC



 2 x 4 x 8 x 16 = 1024

2 x 4 x 4 x 8 = 256

計算の時間複雑さ

条件付独立性を使うと :

単にベイズをチェーンで :

P(C=F)  P(C=T)

0.5       0.5

C P(S=F) P(S=T)

F
T

0.5      0.5
0.9      0.1

C P(R=F) P(R=T)

F
T

0.8      0.2
0.2      0.8

Cloudy

WetGrass

RainSpinkler

S R P(W=F) P(W=T)

F F
T F
F T
T T

1.0      0.0
0.1      0.9
0.1      0.9

0.01     0.99

再び、DAGの意味

 DAG：確率変数間にある半順序が定まっている。

 つまり、確率変数間に矢印が定まっていて（全変数間である必要はない）、推移
律に矛盾しない

 これと矛盾しない全順序がある

 つまり、全確率変数間に矢印が定まっていて、推移律に矛盾しない。

 変数の名前を付け替えて、

 そうすると、全変数の結合確率が次のように簡略化されると考える。

 ただし、pa(Xi) は Xi より上位の(i.e. 矢印が出ている）変数の集合

 この式から逆にDAGを作ることができる。すなわち、両者は等価
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B

条件付独立

 実際問題における条件付独立性:
実際問題では、多くの場合、ある変数集合 pa(Xi){X1, …, Xi – 1} を定め
ることができる. ただし pa(Xi) が与えられたとき, Xi は {X1, …, Xi - 1} –
pa(Xi) に含まれる変数に対して独立, i.e.

P(Xi | X1, …, Xi – 1) = P(Xi | pa(Xi))
とする. これを「Xi と {X1, …, Xi – 1} - pa(Xi) は, pa(Xi) を条件として、条
件付き独立である」という

 このとき

 ベイジアンネットは、この式が成立するものと定義する

 なお、変数間の関係が不明なときは、次の変形しかできない
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1
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Alarm

Burglary Earthquake

John Calls Mary Calls

現実問題には因果
関係があるだろう。
逆はいえない

1 2

3

4 5
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条件付独立
Alarm

Burglary Earthquake

John Calls Mary Calls

1 2

3

4 5

 条件付独立性の意味:
例えば、上記の例では、P(John Calls | 順序が前の全変数) = 
P(John Calls | Alarm) であるが、これは、”John Calls の、順序が前
にある全部の変数を条件とした確率を考えるとき、条件としては、
Alarmだけを考えればよい” ということを意味している。

 つまり、（殆ど同語反復）Alarm を条件として、John Calls と順序がそ
の前である全部の変数が条件付き独立ということは、Alarm の値（ or 
分布）が決まれば、これらの変数の値（分布）に関わりなく、John Calls
の分布が決まるということである。

24
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簡単な例

 例（続）: （順序 B→E→A→J→M ）
P(B, E, A, J, M) 
=P(B) P(E|B) P(A|B,E) P(J|A,B,E) P(M|B,E,A,J)
=P(B) P(E) P(A|B,E) P(J|A) P(M|A) 

=P(M|B,E,A,J) P(J|A,B,E) P(A|B,E) P(E|B) P(B)
=P(M|A) P(J|A) P(A|B,E) P(E) P(B) 

 pa(B) = {}, pa(E) = {}, pa(A) = {B, E}, 
pa(J) = {A}, pa(M) = {A}

 条件付確率表で定めるもの: 
P(B), P(E), P(A | B, E), P(M | A), P(J | A)

Alarm

Burglary Earthquake

John Calls Mary Calls
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条件付独立性

 P(A,B|C)=P(A|C) P(B|C) ならば, 確率変数AとBは、
確率変数Cを条件として独立であるという。このとき、

 P(A|B,C)=P(A,B|C)/P(B|C)=P(A|C)

 やっかいなのは、P(A,B)=P(A) P(B), すなわち、AとB
とが独立であっても、あるCに対して、
P(A,B|C)  P(A|C) P(B|C) となる、すなわち、確率変
数Cを条件とした条件付独立にならないことがある。

 代表例は右図
A

C

B

A B

C

X

バッテリー
上がり

ガス欠

エンジン
かからず

Pearl 1988
independent causes are made dependent by 
conditioning on a common effect

)()|()()|,(),(),,(),|( CPCBPCPCBAPCBPCBAPCBAP 

条件付独立性

 確率変数AとBは、確率変数Cを条件として独立である
P(A,B|C)=P(A|C) P(B|C)  or equivalently
P(A|B,C)=P(A|C)
 右図では P(A,B,C)=P(C|A,B)P(A)P(B)

A

C

B

A B C P(A,B,C)

T T T 0.392
T F T 0.147
F T T 0.147
F F T 0.018
T T F 0.098
T F F 0.063
F T F 0.063
F F F 0.072

P(C|A,B) P(A,B) P(A) P(B)

0.8 0.49 0.7 0.7
0.7 0.21 0.7 0.3
0.7 0.21 0.3 0.7
0.2 0.09 0.3 0.3
0.2 0.49 0.7 0.7
0.3 0.21 0.7 0.3
0.3 0.21 0.3 0.7
0.8 0.09 0.3 0.3

P(A,B|C) P(A|C) P(B|C)

0.557 0.766 0.766
0.209 0.766 0.234
0.209 0.234 0.766
0.026 0.234 0.234
0.331 0.544 0.544
0.213 0.544 0.456
0.213 0.456 0.544
0.243 0.456 0.456

P(A,B) = P(A) P(B) P(A,B|C)  P(A|C) P(B|C)

注意:   296.0)(,704.0)(,),,(,  FCPTCPcCBAPBAP
c

A B

C

X

は独立とBA  :)()|( APBAP 

P(X) は確率分布を表す関数である

条件付独立性

 P(A,B   ) = P(A   ) P(B   )

 P(A,B|C) = P(A|C) P(B|C)

A

C

B

A B C P(A,B,C)

T T T 0.392
T F T 0.147
F T T 0.147
F F T 0.018
T T F 0.098
T F F 0.063
F T F 0.063
F F F 0.072

P(C|A,B) P(A,B) P(A) P(B)

0.8 0.49 0.7 0.7
0.7 0.21 0.7 0.3
0.7 0.21 0.3 0.7
0.2 0.09 0.3 0.3
0.2 0.49 0.7 0.7
0.3 0.21 0.7 0.3
0.3 0.21 0.3 0.7
0.8 0.09 0.3 0.3

P(A,B|C) P(A|C) P(B|C) P(C) P(A,C) P(B,C)

0.557 0.766 0.766 0.704 0.539 0.539
0.209 0.766 0.234 0.704 0.539 0.165
0.209 0.234 0.766 0.704 0.165 0.539
0.026 0.234 0.234 0.704 0.165 0.165

 
c ac bc

cCBaAPcCbBAPcCBAP ),,(),,(),,(

 
ab

cCBaAPcCbBAPcCBAPc )|,()|,()|,(

C=TとFの場合

C=Tの場合のみ

A B C P(A,B,C)

T T T 0.392
T F T 0.147
F T T 0.147
F F T 0.018

A B

C

X

BN と条件付独立性

 一般には :
P(E,D,C,A,B)=P(E|D,C,A,B) P(D|C,A,B) P(C|A,B) P(A|B) P(B)

 右図であれば: 
P(E,D,C,A,B)=P(E|D,C) P(D|A) P(C|A,B) P(A) P(B)

 条件付独立らしきところ : 
P(E|D,C,A,B)= P(E|D,C)
P(D|C,A,B)= P(D|A,B)
ちょっと考えると
P(C|D,A,B)=P(C|A,B)

 （直感的に） : 
{D,C}を条件として、{A,B}とE は条件付独立
{D,C}を何でもよいから定めると E の分布は定まり、当然、{A,B}
の値によらない。
｛A,B}を条件としてCとDは条件付独立である。
ただし、{A,B,E}を条件とした条件付独立である、とはいえない。
{A,B}の値が定まっても、CとDの分布はいずれも、Eの値に依存し
ているからである。

A

E

D C

B

29

条件付独立性の判定方法

 D-separation: ある証拠が与えられたとき、それに対応
する変数を条件として、他の変数が条件付独立であるた
めの十分条件を与える。
 証拠: ある確率変数達について、実現した値

 DAG上で、２変数間を、証拠変数がさえぎるか否かを判
定し、それで、条件付独立か否かを表している。

全変数の結合確率表を作って計算すれば
分かるのだが、それはしたくない

30
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D-separation

 D-separation は、DAG上の変数間の独立性を調べるグラフ的なテ

ストである

 A, B: 変数集合. 独立性を調べる

Z: 変数集合. 条件

A の全ての変数とBの全ての変数間の全てのpathを調べる

 AとBはZを条件として（i.e. Zが観測されるとき）独立である

（ ） iff A の全ての変数とBの全ての変数の間の全ての

pathが通行止めである

 もしpathが一つでも通行可能であれば、独立も非独立もいえない

 D-separationが成立していないときに独立性を言おうと思えば、条件

付確率表を調べるしかない

 ある pathが通行止めであるのは、このpath上のあるノード列が次の

スライドに示す「通行止め」になっている場合である。

A    B | Z

31

通行止め

w

w

w

連続 分岐 合流

通行止め Zw

Zw

Zw

Zw

ZwZw  )( and 全子孫

ZwZw  )(or  ある子孫通行可

32

例
w

QXZ

Y

P

( Q     X, Y, Z, P | W ) : QW X は分岐. Wを条件として通行止め

( Z     X, W, Q |  ) :    Z YX は合流. Y及びその子孫Pを条件としないので通行止め. 

( Z     X, W, Q | P ) :    Z YX は合流. Yの子孫Pを条件としているので通行可能. 

( Z, Y, P     W, Q | X ) : W  X  Y は連続. Xを条件として通行止め.

( Z, Y, P     W, Q |  ) : W  X  Y は連続. Xを条件としていないので通行可能.

D separation による説明正しい関係

33

Markov Blanket

 Markov blanket: 親 + 子供 + 子供の親

 （中心にある）ノードは、Markov blanket 内の変数を条件として、ネット
ワーク内のどの変数からも、条件付独立である

34

推論

 ベイジアンネットワークで確率を計算することを推論とい
う

 一般に, 推論では次の形のクエリーが扱われる:
P( X | E )

X = 問い合わせる変数

E = 証拠 evidence 変数

35

推論

 クエリーは、例えば、:
P(インフルエンザ= true | 発熱 = true, 急性症状 = true)

 注:  悪寒 と 筋肉痛 という変数がベイジアンネット中に現れ
ているが、クエリー中では値が与えられていない (ie. 質問変
数としても証拠変数としても現れていない)

 未観測の確率変数として扱われる

インフルエンザ

悪寒 発熱 筋肉痛 症状が急性

36
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他の例 : Water-Sprinkler

),|Pr()|Pr()|Pr()Pr(),,,Pr(

),,|Pr(),|Pr()|Pr()Pr(),,,Pr(

SRWCSCRCWSRC

SCRWCRSCRCWSRC



 2 x 4 x 8 x 16 = 1024

2 x 4 x 4 x 8 = 256

計算の時間複雑さ

条件付独立性を使うと :

単にベイズをチェーンで :

0.5       0.5

P(C=F)  P(C=T)

0.5      0.5
0.9      0.1

F
T

P(S=F) P(S=T)C

0.8      0.2
0.2      0.8

F
T

P(R=F) P(R=T)C

Cloudy

WetGrass

RainSpinkler

1.0      0.0
0.1      0.9
0.1      0.9

0.01     0.99

F F
T F
F T
T T

P(W=F) P(W=T)S R

BNにおける推論

 WetGrass が真のとき、２つの
説明が可能 : Rain か
Sprinkler
 どちらがよりありうるか?

708.0
6471.0

4581.0

)Pr(

),,,Pr(

)Pr(

),Pr(
)|Pr( , 












TW

TWTRSC

TW

TWTR
TWTR sc

430.0
6471.0

2781.0

)Pr(

),,,Pr(

)Pr(

),Pr(
)|Pr( , 












TW

TWTSRC

TW

TWTS
TWTS rc

Rain が真であるのが理由である可能性がより高い

Sprinkler

Rain

37

BNにおける推論 (2)

 Bottom-Up :
 結果から原因へ  診断 diagnostic
 例. エキスパートシステム, パターン認識,…
 証拠・結果が与えられたとき、それを説明する最もありうべき仮説を求める

 Top-Down :
 原因から結果へ  推論 causal
 例. 生成モデル, 計画,…
 ある仮説のもとどのような結果がどのような確率で起こるか？

 Explain Away :
 Sprinkler と Rain は, WetGrass が真であることの説明に際し, 競合している
 この二つは, 共通の子供（WetGrass）が観測されると条件付依存となる

38

Explaining away effect

ある仮定（または仮定の集合）を支持す
る証拠が、その証拠とは相容れない（競
合する）仮定の確からしさを減少させる
効果、またはその現象

Earthquake

Radio

Burglary

Alarm

Call

Radio

Call

Explaining away effect

Call=true が観測されると、Earthquake=true への信頼度
も Burglary=true への信頼度も上昇する。しかし、
Radio=true がさらに観測されると、Earthquake=true への
信頼度は上昇するが、Burglary=true への信頼度は減少
する。

推論 – まとめると

 因果推論
Causal Inferences

 診断推論
Diagnostic Inferences

 原因間推論
Intercausal Inferences

 混合推論
Mixed Inferences

Q E

Q

E

E EQ

E Q

40

推論 – 結局のところ

 条件付確率を求めること

 そのためには、結合確率が高速に計算で
きるとよい

   
 EP

EQP
EQP

,
|  Q と E は確率変数（または当該

確率変数のある値）の集合で、
重なりはない

41

Naïve な推論

BN で P(Q|E = e) を解く naïve なアルゴリズム

 条件付確率を全て乗じ, 全変数に関する結合確率分布を
求める

 BN 構造が使用されず, 変数が多いときこのアルゴリズ
ムは実効的ではない

 一般にこの推論は NP-hard

   
 

 
  


q

EqQP

EQP

EP

EQP
EQP

,

,,
|

全然、 BN ではない。
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因果推論 Causal Inferences

原因から結果へ
の推論

例: 窃盗が入った
として,  
P(J=true|B=true)?

85.0

)06.0)(05.0()94.0)(9.0(

)|()|()|()|(

)|(),|()|(),|(

)|,()|,()|(

94.0

)998.0)(94.0()002.0)(95.0(

)|(),|()|(),|(

)|,()|,(

)|(
















BAPAJPBAPAJP

BAPBAJPBAPBAJP

BAJPBAJPBJP

tBfEPtBfEAPtBtEPtBtEtAP

tBfEtAPtBtEtAP

tBtAP

同様に P(M|B)=0.67 となる

Burglary Earthquake

Alarm

John Calls Mary Calls

P(B=true)
0.001

P(E=true)
0.002

B  E  P(A=true)
T  T 0.95
T  F 0.94
F  T 0.29
F  F 0.001

A     P(J=true)
T 0.90
F 0.05

A     P(M=true)
T 0.70
F 0.01

略記:    とは ,        とはtA A A fA 

手計算でやってみよう

診断推論 Diagnostic Inferences

結果から原因へ. 

例: John が電話をした. 
では P(burglary)?

)(

)()|(
)|(

JP

BPBJP
JBP 

002517.0

)999.0)(998.0)(001.0()998.0)(001.0)(94.0()002.0)(999.0)(29.0()002.0)(001.0)(95.0(

),(),|(),(),|(),(),|(),(),|(

),,(),,(),,(),,()(







EBPEBAPEBPEBAPEBPEBAPEBPEBAP

EBAPEBAPEBAPEBAPAP

P(J) は?  まず P(A) が必要:

052.0

)9975.0)(05.0()002517.0)(9.0(

)()|()()|(

),(),()(







APAJPAPAJP

AJPAJPJP 016.0
)052.0(

)001.0)(85.0(
)|( JBP

false positives 多し

Burglary Earthquake

Alarm

John Calls Mary Calls

P(B=true)
0.001

P(E=true)
0.002

B  E  P(A=true)
T  T 0.95
T  F 0.94
F  T 0.29
F  F 0.001

A     P(J=true)
T 0.90
F 0.05

A     P(M=true)
T 0.70
F 0.01

手計算でやってみよう

原因間推論 Intercausal Inferences

Explaining away effect 
が発生する.

Alarmが所与なら, P(B|A)=0.37.   

そこに Earthquake が真という証拠を加え
れば, P(B|A,E)=0.003.

すなわち, B と E は独立であるが, Aを条

件とした条件付独立ではないため、一方
に証拠があれば, 他方の確率分布は変
化する可能性がある

Burglary Earthquake

Alarm

John Calls Mary Calls

P(B=true)
0.001

P(E=true)
0.002

B  E  P(A=true)
T  T 0.95
T  F 0.94
F  T 0.29
F  F 0.001

A     P(J=true)
T 0.90
F 0.05

A     P(M=true)
T 0.70
F 0.01

0.00094002

)94.0)(998.0)(001.0()95.0)(002.0)(001.0(

)94.0)(()()95.0)(()(),(




 EPBPEPBPABP

3735.0)(),()|(  APABPABP

0.0000019)95.0)(()(),,(  EPBPAEBP

0.00058132

)29.0)(999.0)(002.0()95.0)(001.0)(002.0(

)29.0)(()()95.0)(()(),(




 BPEPBPEPAEP

0.003268),(),,(),|(  EAPEABPEABP

手計算でやってみよう

混合推論 Mixed Inferences
原因間推論と診断推論を
同時に

例: “John calls” かつ
“Earthquake=false”:

017.0),|(

03.0),|(




EJBP

EJAP

この計算はかなり込み入っている

Burglary Earthquake

Alarm

John Calls Mary Calls

P(B=true)
0.001

P(E=true)
0.002

B  E  P(A=true)
T  T 0.95
T  F 0.94
F  T 0.29
F  F 0.001

A     P(J=true)
T 0.90
F 0.05

A     P(M=true)
T 0.70
F 0.01

 

001742.0

)998.0)(999.0001.0001.094.0)(90.0(

)()|(),|()|(),|()|(

)()|()|(

)()|(),|(),,(









EPEBPEBAPEBPEBAPAJP

EPEAPAJP

EPEAPEAJPEJAP

 

04980.0

)998.0)(999.0999.0001.006.0)(05.0(

)()|(),|()|(),|()|(

)()|()|(

)()|(),|(),,(









EPEBPEBAPEBPEBAPAJP

EPEAPAJP

EPEAPEAJPEJAP

03379.0

)),,(),,(/(),,(),|(


 EJAPEJAPEJAPEJAP

手計算でやってみよう

46

一般化: 行うべき推論

 一部の変数について、その値が観測される

 仮に証拠変数と呼ぶ E
 推論 – 証拠変数以外の変数 Xi すべてについて、条

件付確率 P (Xi |E ) を求める

 一般には、計算量大 – (NP-hard)
 （ある条件のもと）厳密値の計算方法がある

 確率伝播 belief propagation
 従って、近似計算も用いられる

||1
,...,

Eee VV

47

厳密な計算方法 – 信念伝播

 Judea Pearl, 1982 による

 単結合グラフ singly-connected graph – どのノード間にも
たかだか一つの無向路しか存在しない – についてのアル
ゴリズム. 

 （下方に、上方に）（確率に基づくある量を）送る。これをメッ
セージと呼ぶ。（原理的には）収束するまで繰り返す（単結
合なら必ず収束する）
 -message: ノード X の上方にある証拠（事前分布）による量。下

方に送られる

 -message: ノード X の下方にある証拠（事前分布）による量。上
方に送られる

以下では少し異なる定式化を行う 48
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単結合グラフ (または Polytrees)

条件を満たさず

複数個の親や複
数個の子を持つこ

とは可能

49

変数の（積分）消去

例: 周辺分布 p(x5) の計算

変数消去の順序は: 1, 2, 4, 3

m12(x2)

m23(x3)

m43(x3)

m35(x5)

ଵݔ

ଶݔ

ଷݔ

ସݔ ହݔ
       

          











3 4 2 1

3 4 2 1

3 4 2 1

121233435

353423121

543215

|)(|||

||||)(

),,,,()(

x x x x

x x x x

x x x x

xxpxpxxpxxpxxp

xxpxxpxxpxxpxp

xxxxxpxp

50

メッセージ伝播

mij(xj): i から j へのメッセージと呼ぶ

i は総和をとって消去する変数, j はそれ以外

消去順序に依存することに注意

m12 (x2 )  p(x2 | x1)p(x1)
x1



ଵݔ

ଶݔ

ଷݔ

ସݔ ହݔ

݉ଵଶ ଶݔ 	 ↓

݉ଶଷ ଷݔ 	 ↓

↘ 	݉ଷହ ହ݉ସଷݔ ଷݔ 	↗

       

     

     

     

 535

34332335

3432335

3233435

2122334355

3

3 4

3 4

3 4 2

|

||

||

|||)(

xm

xmxmxxp

xxpxmxxp

xmxxpxxp

xmxxpxxpxxpxp

x

x x

x x

x x x













 

 

  

51

信念伝播 (Pearl, 1982)

i: メッセージ発信元

j: メッセージ送信先

N(i):  i の近傍

N(i)¥j: j を除く、i の近傍

例

周辺分布は: 

ଵݔ

ଶݔ

ଷݔ

ସݔ ହݔ

݉ଵଶ ଶݔ 	 ↓

݉ଶଷ ଷݔ 	 ↓

↘ 	݉ଷହ ହ݉ସଷݔ ଷݔ 	↗

↑ 	݉ଶଵ ଵݔ

↑ 	݉ଷଶ ଶݔ

↙ ૜૝࢓ ࢞૝
૞૜࢓ ࢞૜ ↖

     
 

 



i jikx xxNx

ikijiijjij xmxxxm
\

,

     

 535

34332335

3

|

xm

xmxmxxp
x


   
 





ik xNx

ikii xmxp
但し、Pearl 1982 とは
定式化が少し異なる

信念伝播 (Pearl, 1982)

i: メッセージ発信元

j: メッセージ送信先

• （無向な木とした）葉 i から開始
(葉 = エッジが一つのノード)

ܰ ௜ݔ ∖ ௝ݔ ൌ ߶

• 木構造から、各ノード i は、メッセージを j に送る前にすべて
の ܰ ௜ݔ ∖ ௝ݔ からメッセージを集めることができる

ଵݔ

ଶݔ

ଷݔ

ସݔ ହݔ

݉ଵଶ ଶݔ 	 ↓

݉ଶଷ ଷݔ 	 ↓

↘ 	݉ଷହ ହ݉ସଷݔ ଷݔ 	↗

↑ 	݉ଶଵ ଵݔ

↑ 	݉ଷଶ ଶݔ

↙ ૜૝࢓ ࢞૝
૞૜࢓ ࢞૜ ↖

     
 

 



i jikx xxNx

ikijiijjij xmxxxm
\

,

53

確率伝播（和積） 一般化

和積（sum-product）更新式

       
 

 



i jikx xxNx

ikiiiijiijjij xmxmxxxm
\

,

     
 





ik xNx

ikiiiiii xmxmxb 

ただし、 は正規化定数を表し
は の を除く近傍を表す

   ji xxN \

ix
jx

݉௜௜ ௜ݔ ൌ ݉௜௜ ,௜ݔ ௜ݕ は、非観測変数	ݔ௜ から観
測変数 ௜へのメッセージを表すݕ

54
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確率伝播（最大-積）

最大-積（max-product）更新式

       
 





jik

i xxNx
ikiiiijiij

x
jij xmxmxxxm

\

,max

     
 





ik xNx

ikiiiiii xmxmxb 

ただし、 は正規化定数を表し
は の を除く近傍を表す

   ji xxN \

ix
jx

݉௜௜ ௜ݔ ൌ ݉௜௜ ,௜ݔ ௜ݕ は、非観測変数	ݔ௜	から観
測変数	ݕ௜へのメッセージを表す

55

確率伝播- 図示

x
i

k

k

k

k

x
i

j k

k

k

mki

     
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観測可能変数による証拠

i

i
y y
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複雑度

 単結合グラフ（polytree）上では, BP アルゴリズムは収束
する。収束速度はグラフの直径に比例する – 高々線形

 各ノードごとの作業は CPT のサイズに比例する

 従って BP の計算量はベイジアンネット中のパラメータ数
に対し線形である

 一般のベイジアンネットワークについては
 厳密な推論は NP-hard

 近似推論も（まともな近似は） NP-hard

57

補足: 伝播の仕方

あるノードを選び、方向は無視して、それを根とする木を考える

 2 パス : 収集し分配する

 Poly-tree に対してのみ有効

rootroot

証拠の収集

rootroot

証拠の分配

Figure from P. Green

例

Data
Data

59

より一般のグラフでは

 信念伝播法が正しい値に収束するには、グラフが単結合でなければならない

 一般的なグラフに対しては、それを junction tree に変換してから適用する方法が考
えられている

 ただし、計算複雑度は、変換の結果発生するクラスター数の指数オーダーである
 もし最適な junction tree を見出そうとすると、それは NP-hard

60
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近似アルゴリズム

 なぜ?
 ループを含むグラフに対して正確な計算を行おうとすると、指数

関数時間かかるため

 また、連続分布を考えた場合、非ガウスであると、message は
閉じた形式では表現できないため

 どうやって?
 決定的な近似: loopy BP, 平均場近似（変分ベイズ） 等

 統計的近似: MCMC (ギッブスサンプラー）, 等

- アルゴリズムにより、速度・精度のトレードオフがある（当然！）

61

ランダムサンプリング Random Sampling

 For i = 1 to n
1. Xi の親ノード(Xp(i, 1), …, Xp(i, n) ) を見つける

2. 当該親ノードにランダムに（このアルゴリズムで）
与えられた変数値を読み出す

3. 次の値を表から読み出す
P(Xi | Xp(i, 1)= xp(i, 1), …, Xp(i, n)= xp(i, n) )

4. この確率に従い xi の値をランダムに設定する

62

確率的シミュレーション Stochastic Simulation

 知りたいのは P(Q = q| E = e)

 ランダムサンプリングを大量に行い次の個数を数える
 Nc: E = e となるサンプル数

 Ns: Q = q かつ E = e となるサンプル数

 N : ランダムサンプルの総数

 N が充分大きければ
 Nc / N は P(E = e) の良い推定値

 Ns / N は P(Q = q, E = e) の良い推定値

 Ns / Nc は従って P(Q = q | E = e) の良い推定値

63

連続変数値

 条件付確率表を考える場合は、離散変数を仮定している

 連続値変数に対しては、例えば、ガウス分布を仮定する。その場

合、平均値と分散を用いることになる

 しかし、基本的には、離散変数を用いる. 実際問題として、連続

値であっても離散化することが多いからである. とはいえ、離散化

のよしあしが結果に大きく影響するので、簡単ではない.
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BNの学習（構築） ad hocに

 入出力 :
 入力: 訓練データと事前知識

 出力: ベイジアンネットワーク
 グラフとパラメータ

 事前知識 :
 最善（期待できな）： ネットワーク構造

 変数間の依存関係

 事前分布

65

場合分け

構造は既知 構造が未知

完全データ パラメータの統計的推
測

(方程式)

構造を含めて離散最
適化

(探索)

不完全データ パラメータ最適化

(EM, 最急降下,…)

両方

(かなり大変,…)

66
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構築

BN を構築する手続き:
 適用領域を記述する変数集合を選ぶ

 変数の順序を定める

 空のネットワークから開始し、変数をネットワークに、指定した順
序に従い、一個ずつ付加していく

 i=1 から順に下記を行う
 第 i 番目の変数 Xi の付加 :

 すでにネットワーク中にある変数 (X1, …,Xi –1) の中の変数から
pa(Xi) を
P(Xi | X1, …, Xi – 1) = P(Xi | pa(Xi))
となるように定める

 領域知識を用いる

 データから判断する

 有向弧を、 pa(Xi) 中の各変数から Xi に結ぶ

67

例: 領域知識を用いて

 順序: B, E, A, J, M
 pa(B)=pa(E)={}, 

pa(A)={B,E}, 
pa(J)={A},  
pa(M)={A}

 順序: M, J, A, B, E
 pa(M)={},   

pa(J)={M}, 
pa(A)={M,J}, 
pa(B)={A}, 
pa(E)={A,B}

 順序: M, J, E, B, A
 完全に結合したグラフ

A

B E

J M

A

B E

JM

AB

E

JM B,EはAを条
件とした条
件付独立で
はないため

BJ|A, BM|A, EJ|A, EM|A

例: 説明

 順序: M, J, A, B, E

A

B E

J M

A

B E

JM

P(B|M,J,A)
= P(M,J,A,B) / P(M,J,A)
= P(J|A)P(M|A)P(A|B)P(B) / ( P(M|A)P(J|A)P(A) )
= P(A,B) / P(A)
= P(B|A)

P(J|M).    簡略化できず
P(A|M,J). 簡略化できず

P(E|M,J,A,B)
= P(E,M,J,A,B) / P(M,J,A,B)
= P(J|A)P(M|A)P(A|B,E)P(B)P(E) / ( P(J|A)P(M|A)P(A|B)P(B) ) 
= P(A,B,E) / P(A,B)
= P(E|A,B)

A

B E

J M

変数順序が大切！

どの変数順序を用いるか?
 視点：確率を計算する自然な順序.

M, J, E, B, A はよくない. なぜなら
P(B | J, M, E) は自然でないから

 視点：弧の個数の最小化.
M, J, E, B, A は宜しくない (弧が多
すぎる), 初めの方がよい

 視点：因果関係反映, i.e. 原因が結
果の前にくる.
M, J, E, B, A は宜しくない. というの

も M と J は A の結果なのに A の
前に来ている

A

B E

J M

AB

E

JM

VS

領域知識がないとき

 データから判断する。
 P(Xi | X1, …, Xi – 1) = P(Xi | pa(Xi)) となる最小の pa(Xi) を見つける

 しかし、データの偏りのため、厳密に上記等号が成立することは期待できない

 そこで、ある程度のエラーを許容することになる。

 しかし、どれだけ許容したらよいかが分からない。

 様々な情報量規準を用いる
 データだけ（多項分布を仮定する（後述）ので、実は頻度）を見ても、データ数の

不足・統計的偏りのため、条件付独立性は結論できない。

 誤差を見込むことになる。どの程度の誤差なら、「条件付独立」と見なすかという
問に対して、それによって、簡単になるなら「条件付独立」と見なそうと答える。

 その時の、残余誤差と簡単さとの trade-off を考え、判断するために、情報量規
準を用いる。

 MDLやベイジアンネットにおけるその精密化である BD (Bayesian Dirichlet) 
score がよく用いられる

 今回は説明省略

71

パラメータ学習

 例: 
 ある BN の構造が所与

 データ集合

 条件付確率 P(Xi | pa(Xi)) の推定

X1

X3

X5

X4

X2

X1 X2 X3 X4 X5

0 0 1 1 0
1 0 0 1 0
0 ? 0 0 ?
… … … … …

? は欠測値を表す

72
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パラメータの推定

 データには欠測値がないとする

 n 変数 X1, …, Xn

 Xi の状態数 or 変数値の数 : ri = |Xi
|

 Xi の親変数の状態総数: qi = |pa(Xi)
|

 推定すべきパラメータ: 


ijk
=P(Xi = j | pa(Xi) = k), 

i = 1, …, n; j = 1, …, ri; k = 1, …, qi

73

簡単な例

例: BN を一つ. どの変数も２値 1, 2 をとるとする.


ijk

=P(Xi = j | pa(Xi) = k)

X1

X3

X2

親変数の状態組合せ

74

要は：簡単な例

例: BN を一つ. どの変数も２値 1, 2 をとるとする.


ijk

=P(Xi = j | pa(Xi) = k)

X1

X3

X2

親変数の状態組合せ

1,1 1,2 2,1 2,2
1 θ311 θ312 θ313 θ314
2 θ321 θ322 θ323 θ324

X3

P(X3|X1,X2)
X1, X2

1,1 1,2 2,1 2,2
1 3 5 7 9
2 7 15 23 31

10 20 30 40

X1, X2
P(X3|X1,X2)

X3

1,1 1,2 2,1 2,2
1 3/10 5/20 7/30 9/40
2 7/10 15/20 23/30 31/40

X3

P(X3|X1,X2)
X1, X2

最
尤
推
定

サンプル数

75

BN におけるパラメータ推定

 次が求まる:

 言葉でいえば,  
ijk = P( Xi = j | pa(Xi) = k) の最尤推定量は

Xi=j かつ pa(Xi) = k となる事例数

pa(Xi) = k となる事例数




j ijk

ijk
ijk m

m*

しかし、ご存じの通り、ちょっとした問題がある。

76

BN におけるパラメータ推定

 実は次の形がよく使われている（Laplace correction）:

 言葉でいえば,  
ijk = P( Xi = j | pa(Xi) = k) の最尤推定量は

Xi=j かつ pa(Xi) = k となる事例数＋１

pa(Xi) = k となる事例数＋「Xiの変数値の個数」

 



j iijk

ijk
ijk rm

m 1*

なお、 “+1” や “ri” にはもっと一般的な形がある。
Dirichlet 分布を事前分布とすることに相当する。
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ベイジアンネットワークの学習

少し数学的に

78
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BNの学習

BNをデータから構成する方法に２種類ある:

• 制約を発見していく方法

− 統計的検定を行って、条件付独立な変数組を発見していく

− これを満たす DAG を見つける

• スコア関数を用いる方法

− DAG を比較するスコア関数を用いる, 
eg. Bayesian, BIC, MDL, MML

− データに最もよくfitする DAG を選ぶ

注: 通常、Markov等価性（説明してありません）による制約を考える。というのも、
Markov等価なDAGは統計的には区別できないからである.
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Bayes的方法(1)
(Cooper and Herskovits, 1992)

データを用いて、条件付独立性に関する統計的推定を行う
– 確率的関係をよりよく表現するモデルを探す

M – 構造を表す離散確率変数. 値 m はありうる DAG 構造.
Mの値は分布するとする. 確率分布を P(m) で表す.

m – モデル m に対応した連続ベクトル値の確率変数（パラメータ）. 値 m はそ
のパラメータ値. m の値も分布する. 確率分布を P(m | m) で表す.

S

F

B L

X

S

L

X
F

B

G.F. Cooper and E. Herskovits (1992) 
Machine Learning, 9, 309-47

Bayes的方法(2)

訓練データ集合を D, DAG構造 m の事後確率は, D が与えられたとして:

但し

mmm dmPmDPmDP  )|(),|()|( 
は周辺尤度である. 例によって事前分布 P(m) が一様分布であれば

)|()|( mDPDmP 

従って、尤度最大化は事後確率最大化となる.







m

mDPmP

mDPmP
DmP

)|()(

)|()(
)|(

81

Bayes的方法 (3)

Cooper and Herskovits (1992) によれば、周辺尤度は次の通り

n – 全ノード数
qi – ノード Xi の親ノード達の値全部の組合せ総数
ri – ノード（離散確率変数） Xi の値の総数
 – 事前分布である Dirichlet 分布のパラメータ（i はノード, 1jqi ）
N – データ数. ノードi, 親ノード値の組合せj, k番目の値

この P(D | m) は Bayesian scoring function として知られている.

 
   








n

i

q

j

r

k ijk

ijkijk

ijij

ij
i i N

N
mDP

1 1 1 )(

)(

)(

)(
)|(







G.F. Cooper and E. Herskovits (1992) 
Machine Learning, 9, 309-47
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計算例

次の DAG m1 と訓練データ D を考える

 
   







n

i

q

j

r

k ijk

ijkijk

ijij

ij
i i N

N
mDP

1 1 1
1 )(

)(

)(

)(
)|(







X Y

データID X Y
1 1 1
2 1 2
3 1 1
4 2 2
5 1 1
6 2 1
7 1 1
8 2 2

P(D | m1) は

Y (i=2) に対し qi = 2 ( X は2値) かつ ri = 2 (Yは2値).  j = 1 に対応する項は

)1(

)11(

)1(

)41(

)52(

)2(










他の項も計算すれば P(D | m1) = 7.22 x 10-6

R.E. Neapolitan, Learning Bayesian Networks (2004)

Y=1 Y=2X=1

計算例 (続)

m1 は、変数 X と Y の間に（条件付）独立性がないことを示すDAG （の
Markov同値クラス）の代表と考えることができる.

さらに m1 と m2 の事前確率は等しい、すなわち P(m1) = P(m2) = 0.5 とす
ると m1 の事後確率は m2 の事後確率より大きくなる. 

Bayesの定理により

m2 を エッジがない DAG とすると P(D | m2) = 6.75 x 10-6

517.0
5.07465.65.0215.7

5.0215.7
)|()|()|()|(

)|()|(
)|(

2211

11
1










mDPmDPmDPmDP

mDPmDP
DmP

X Y
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探索アルゴリズムの必要性

理想的には全DAGの空間を網羅的に探索し、前述の Bayesian scoring 
function を最大化するDAGを見つけたい.

しかし、ノード数を大きく（ほんの少し大きく）しただけで、DAGの数は莫大なも
のとなる:

ノード数 DAG総数
1 1
2 3
3 25
4 543
5 29,281
10 4.2  1018

様々な発見的方法が開発されている
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K2 Algorithm (1)
(Cooper and Herskovits, 1992)

n 変数 {X1,X2,…,Xn} 間に順序があると仮定する。すなわち, j > i ならば、 Xj

は Xi の親にはなれないとする.

X2 について

X2 に親がないとしてBayesian score を求める

X2 の親が X1 として Bayesian score を求める. これがより大きければ X1 か
ら X2.へのエッジをつける.

Xiについて

Xi に親がないとして Bayesian score を求める

Xi に親が一つだとして Bayesian scoreを求める. 親がない場合より大きい
scoreがあればその最大値を与える Xj からのエッジをつける.

次に第二番目の親を選んで同様のことを試みる. これをscoreが大きくならな
いまで続ける.

K2 Algorithm (2)

変数の順序を {X, Y, Z} とする

X Y Z

X Y Z X Y Z

X Y Z X Y Z X Y Z

X Y Z X Y Z

Level 1

Level 2

Level 3

Level 4


