
1

情報意味論（12） Boosting

慶應義塾大学理工学部

櫻井 彰人

競馬で当てるには？

 予想屋（ではなく専門家に）訊く

 仮定:
 専門家であっても、極めて正確な予測規則を

作成することはできない

 けれども、どんな事例であっても、それを聞け
ば、ランダム以上の予測をする予測規則を作
成することはできる

 よく当たる予測規則を作る方法はあるか？

アイデア

 専門家に経験則を作ってもらい、それを集める
（統合する）。

 統合方法その１
 一気に作ってもらい、例えば、多数決を取る

 統合方法その２
 ある人の経験則を使ってみる。

 その人の経験則が失敗する事例を集め、別の人の経
験則を適用する

 そして、、、
実は、これがうまくいくのです。おまけに、専門家でなくても
弱学習アルゴリズム “weak” learning algorithm でよい

課題

 （教えを請うときには）どのレースを選べばよいの
か?
 前の人が失敗したレースを選ぶのだが、その中でも

 最も難しいレースに集中する

(それまでの経験則では最も外れているレースのこと)

 これらの経験則をどう統合すれば、一つの予測
規則にできるのか?
 経験則の（重み付き）多数決をとる

ただ、学習事例を人によって変えてしまったので、何か工夫が
必要そうな気がする。

 3個の仮説からなる空間を考える

 新しい未知の事例に対し、次を仮定しよう
h1(x) = 1 h2(x) = 0 h3(x) = 0

 この場合,
P(f(x) =1) = 0.4 P(f(x) = 0) = 0.6 しかし hmap(x) =1

 （最もありうる仮説ではなく）最もありうる分類結果を、すべての
仮説の予測を結合して、得たい。

 各仮説には事後確率による重みづけをすればよさそう
(うまくいくにはいくつかの仮定が必要)

ベイズ最適な分類器: 例

P(h1 | D)  0.4; P(h2 | D)  0.3; P(h3 | D)  0.3  hMAP  h1

補足（復習含む）

2

 Vを可能な分類結果としよう

 ベイズ最適な分類:

 先ほどの例では:

 最適な予測は、勿論、 0.

ベイズ最適な分類器: 例(2)

D)|)P(hh | P(v D)|)P(hD,h | P(v

)D |h, P(v D)|P(v

iHh ijiHh ij

Hh ijj

ii

i












D)|)P(hh | P(vargmax D)|P(vargmax v iHh ijVvjVv
ijj   

0.40.30 0.30 0.41 D)|)P(hh | P(1 D)|P(1 iHh i
i

 

0.60.31 0.31 0.40 D)|)P(hh | P(0 D)|P(0 iHh i
i

 

背後にある仮定 (1)

 これはいつもうまくいくのであろうか?
 考えるヒント: 仮説の線形結合である

 （医師の診断だとしよう）仮に、何人かが同じ医局だとした
ら？ 出身が同じ、インターン先が同じ、、、

 仮に、何人かは、webサイトでしかも同じ医師の意見に基づく
ものであったら？

 一般に、医師間（仮説間）に無視できない相関があると、それ
は、相互に依存する冗長性があることを意味する

 こうした意見は、過剰に重みづけすることになる

 ベイズ最適は、仮説空間に関する周辺化に見える

D)|)P(hh | P(vargmax D)|P(vargmax v iHh ijVvjVv
ijj   

背後にある仮説(2)

 うまくいくとはどういうことであろうか?
 |D| が無限に増大するとき、ベイズ最適な分類結果は最良な

答えに収束すべきである。そうなるか？

 |D|  となる時、荷重ベクトル w の動きを考えてみよう

 “最良な答え” は他の何よりもよいということ

 仮に、同点はないものとしよう（そうすれば最良が存在する）

 最良の w は、一つの1（最良のh用）を除いて、全部0．

 一般に、これは起こるのか? なぜ? 起こるようにするには、ど
うしたらよいのか？

 追加的情報がない場合、ベイズ最適以上に良くはできない.

 ベイズ最適な分類器は、一般に、仮説空間 H の要素ではない(!)

 ベイズ最適分類器は、「独立性」（冗長性がないこと）に関し、強い仮説「仮
説の誤り間に相関はない」をおいている

 「誤りに相関はない」 – 一種のナイーブベイズ。ただし、仮説空間 H で。

 もう一つの強い仮定: ある hH は正しい; “agnostic”な学習ではない.

 専門の統合（combining expertise）; 専門家の線形結合（アンサンブル）を
見出す

ベイズ最適な分類器

D)|)P(hh | P(vargmax D)|P(vargmax v iHh ijVvjVv
ijj   

Agnostic: 目的関数に何
に仮定も設けない

Gibbs 分類器
 Bayes 最適分類器は訓練コストが高い

 すべての hH について事後確率を計算する必要がある

 空間 H 上で現在の事後分布に従い、訓練と分類を行う

 訓練:
 H 上のある事前分布を仮定する

 （更新される）この分布に従い、ある仮説 h を選ぶ

 仮説 h に基づいて分類する

 仮説 h の事後確率を更新する

 繰り返す

 訓練データを何回も; 複数個の仮説 h を一度に引いて更新することも可能

 確率が不当に高い h が（相対的に）多く引かれる
 訓練誤りが多いと、その h の事後確率が下がる.

正規化を通じて、他の仮説の事後確率が上がる

 より正確な仮説が引かれ事後確率が上がる傾向にある

 収束する

 最悪時の期待誤り率は、Bayes最適分類器のそれの2倍以下

Bagging: Bootstrap AGGregatING

 分散の減少を狙う

 訓練データによる性能のばらつきが大きい分類器がある
 統計的信頼度が低い過剰適応・過学習（overfitting) をする

 データ中のもっともらしいパターンを発見する

 多数の分類器の“平均”
 Bootstrap: データのリサンプリング（再標本化）

 複数の訓練データ集合を生成する
 もとの訓練データをリサンプル（再標本化）する

 復元抽出である

 得られたデータ集合は、それぞれ異なる「もっともらしい」パターンを持つ

 複数個の分類器を学習する
 「もっともらしい」パターンは相関しない

 根底にある真のパターンは多くのデータ集合に共通であろう

 分類器の結合: 新テストサンプルのラベルは、分類器の多数決で決める

3

Bagging
 ロジスティック回帰も overfit する. 例えば、

 線形分離可能な場合
 非常に急峻な関数確率分布でフィットする

 Baggingを考えてみよう
 多くの属性（次元）があるとき

 ある次元で急峻になることは珍しくなかろう
 しかし、システマティックではない（偶然の産物であろう）
 であれば、平均することにより、その効果を減少させることができる

 訓練したしかし「ランダムな」分類器の集合を生成する
 時に、リサンプリングさえ必要ではない – 反復アルゴリズム
 リサンプリングにより訓練データ集合の情報が欠けることもあろう
 正しく行えば, それの影響は小さい
 時にデータの順序を入れ替えるだけで十分なこともある
 そうすれば、訓練データにある情報や証拠が減少することはない

 決定「切り株」 （stumps）
 決定木、しかし深さ１レベル（1回の分枝）
 時には、少数のレベルを用いる。特徴間にあるある非線形性をとらえるため

 決定株の bagging
 しばしば、信じられないほどうまくいく
 最初に試すべきものの一つ

Boosting: 弱い学習器を強くする

 弱い学習器（ weak learner ）:
 重み付訓練データが与えられれば、ある仮説を生成する

 それは高い確率で

 少なくともランダムな推定よりは「少し」よく正確である,
 どのようなデータ分布に対しても.

 訓練データ集合 Z と仮説空間 H が与えられたとする

 弱い学習器の線形結合を学習する

 各繰り返しにおいて, 新しい仮説(分類器） hi H を追加し,
 重み付 Z に対する分類器の性能に従って hi に重みを付ける

 新 h は、同じ Z （しかし再重みづけ：難しい zj は重く）で訓練

 注：２つの重み – 訓練データの重みと弱い学習器の重み

 各分類器の重み付投票により分類

 「強い」学習器が作れる：任意に高い精度にできる

Boosting

 一種の「メタ」学習アルゴリズム

 どんな「弱い」学習器も「boost」できる

 Boosting によれば欲しいだけの高い精度が得られ
る

 訓練データが完全に分類できたとしても、その後訓
練を継続することにより、性能の向上が図れる

 過学習（overfit）しないように見える

 外れ値（outlier）やノイズに、過剰に敏感になりうる

 ポピュラーかつ実用的なのが AdaBoost (adaptive
boosting)

Boosting

 boosting = 複数個の低精度の経験則を高精度な予測
規則に変換する一般的方法

 機械学習では:
 弱(weak)学習アルゴリズム（誤差 1/2- なる仮説

（分類規則）を常に見出すことができる）が与えられた
とき

 boosting アルゴリズムは、誤差   なる単一の仮説
を構成することができる（ことが証明できる）

 理論によれば、しばしば、汎化能力はよい

目次

 boosting 入門 (AdaBoost)
 訓練誤差の解析

 マージンの理論に基づく、汎化誤差の検討

 結果例

以下のスライドは、主に、下記論文に基づく
Robert E. Schapire. The boosting approach to machine learning: An overview.
In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear
Estimation and Classification. Springer, 2003.

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651-1686, 1998.

弱い学習器

弱い学習器

弱い分類規則

h
荷重付きの訓練例

(x1,y1,w1),(x2,y2,w2) … (xn,yn,wn)

事例

x1,x2,x3,…,xn
h

ラベル

y1,y2,y3,…,yn

弱い要請:

（荷重を考慮した）誤答の割合

4

ブースティングの過程

弱い学習器 h1
(x1,y1,1/n), … (xn,yn,1/n)

弱い学習器 h2
(x1,y1,w1), … (xn,yn,wn)

h3
(x1,y1,w1), … (xn,yn,wn) h4

(x1,y1,w1), … (xn,yn,wn) h5
(x1,y1,w1), … (xn,yn,wn) h6

(x1,y1,w1), … (xn,yn,wn) h7
(x1,y1,w1), … (xn,yn,wn) h8

(x1,y1,w1), … (xn,yn,wn) h9
(x1,y1,w1), … (xn,yn,wn) hT

(x1,y1,w1), … (xn,yn,wn)

最終規則: Sign[]h1  h2  hT

AdaBoost [Freund & Schapire ’97]

 2値ラベル y = -1,+1
 出力: Sgn[t t ht(x)]

 margin(x,y) = y [t t ht(x)]
 次の値を最小化するように ht と t を選ぶ（まず ht を選

び、次に t を選ぶ）

(x,y) exp (-margin(x,y))
= (x,y) exp (- y [t t ht(x)])

ht はどう決めるのか？
wt=Dt と学習器で決める

wt はどう決めるのか？
ht-1 の誤りから決める

ht
(x1,y1,w1), … (xn,yn,wn)

（陽に解けるので、 t の最小
化問題の解の計算は簡単）

（これは多数決）

（微妙な違いに注意）

AdaBoost の計算手順
•

• 学習により

•

ただし、 は となるように定める

•












)(if

)(if)(
)(1

iti

iti

t

t
t

xhye

xhye

Z

iD
iD

t

t





miD 1)(1 

0
1

ln
2

1








 


t

t
t 











 

t
tt xhxH)(sgn)(final 




 
iit

t
yxhi

tiitDit iDyxh
)(:

)(])([Pr

Yoav Freund and Robert E. Schapire.
A decision-theoretic generalization of on-line learning and an
application to boosting.
Journal of Computer and System Sciences, 55(1):119-139, August 1997.

)()( tt hD

 



m

i
t iD

1
11tZ

学習器に対する要請では、誤り
率が0.5未満だが、最良のもの
を返す方がよいと考えられる。
2013年度のHWで、間違いが
多発した

Adaboost の主な性質

 あてずっぽう（正解確率1/2）に対する、弱
い学習器の正解率差（正値）: T .
その時 最終規則の 訓練誤差 は高々

訓練誤りを計算するときの、訓練データの荷重は、初期荷重
（変更した荷重値は、あくまでも、学習のためであるから）

  
















 



T

t
t

T

t
t

1

2

1

2 212exp2exp 

再掲: AdaBoost [Freund & Schapire ’97]

 2値ラベル y = -1,+1
 出力: Sgn[t t ht(x)]

 margin(x,y) = y [t t ht(x)]
 次の値を最小化するように ht と t を選ぶ（まず ht を選

び、次に t を選ぶ）

(x,y) exp (-margin(x,y))
= (x,y) exp (- y [t t ht(x)])

ht はどう決めるのか？
wt=Dt と学習器が決める

wt はどう決めるのか？
ht-1 の誤りから決める

ht
(x1,y1,w1), … (xn,yn,wn)

（陽に解けるので、 t の最小
化問題の解の計算は簡単）

最急降下法としての Adaboost
 探索する、分類器の空間: “弱い仮説” の線形和

のなす空間 t t ht(x)

 当初の目標: 誤り数最小の超平面を見つける
(x,y) (1 - y Sgn[t t ht(x)])/2

= (x,y) (1 + Sgn[- y t t ht(x)])/2
 NP-hard な問題であることが知られている (d を当該

空間の次元とするとき、d の多項式時間で動作するア
ルゴリズムが存在しないだろう)

 妥協案: 指数損失関数で（誤り数関数を）代用し
て、軸毎の最急降下を用いる.

(x,y) exp (- y [t t ht(x)])

5

最小化: 定式化

 判別関数の損失:

 Adaboost の判別関数:

 f(x) に新たに仮説 h(x) を加えた関数

の損失 を最小化する c を求めよう


t

tt xhxf)()(





m

i
ii xFy

m
FL

1

))(exp(
1

))((

)()(xchxf 

))()(( chfL

)(sgn)(final xfxH 

損失関数最小化: 式変形

 )exp()1)(exp())((

)(
~

)exp()(
~

)exp())((

))(exp()(
~

))(exp()(
~

))((

))(exp()(
~

))((

))(exp(~
))(exp(

))((

))(exp())(exp(
1

))()((exp(
1

))()((

)(:)(:

)(:)(:

1

1

1

1

ccfL

iDciDcfL

xchyiDxchyiDfL

xchyiDfL

xchy
Z

xfy
fL

xchyxfy
m

xchxfy
m

chfL

iiii

iiii

xhyixhyi

xhyi
ii

xhyi
ii

m

i
ii

m

i
ii

ii

m

i
iiii

m

i
iii










































































)(:

1

)(
~

))(exp(
~

~
))(exp(

)(
~

ii xhyi

m

i
ii

ii

iD

xfyZ

Z

xfy
iD



)exp()1)(exp())((ccchL なお、

m

Z

xfy
m

fL
m

i
ii

~

))(exp(
1

))((
1



 


とおく

損失関数最小化
 導関数

より、 のとき

h はなんでもよいのだが、 となるべし
 すなわち

 
 

 )2exp()1()exp())((
)exp()1)(exp())((

)exp()1)(exp())(())()((

ccfL
ccfL

ccfL
dc

d
chfL

dc

d















1

ln
2

1
c

   

)()()(

1
ln

2

1

)(
~

)(exp
~

 where,~
)(exp

)(
~

)()(

)(:

1

xhxhxf

iD

xfyZ
Z

xfy
iD

xhxf

t ttnew

xhyi

m

i
ii

ii

t tt

ii


































)1(2))(())()(( fLchfL

21..,1)1(2,0   eic

h に自由度があるとはいえ、損
失関数 L がより小さくなるために
は、εが小さい h の方がよい

c<0 なら –h を用いる.  =1/2 はダメ
















m

i
ii

ii

xhyi

xfyZ

Z

xfy
iD

iD
ii

1

)(:

))(exp(
~

~
))(exp(

)(
~

)(
~

)1(2))((chL

逐次的アルゴリズムに変換(1)

 




































t

s sst

t

t
t

xhyi
tt

tt

m

i
t

iti
t

t

s sst

xhxf

iD

hD

iD

Z

xfy
iD

xhxf

iti

1

)(:

1

1

1

11

)()(

1
ln

2

1

)(

)()(

)(1 where

,~
)(exp

)(

)()(









 

 

)()(

)(

1
ln

2

1

)(
~

)(exp
~

,~
)(exp

)(
~

)()(

)(:

1

xhxh

xf

iD

xfyZ

Z

xfy
iD

xhxf

t tt

new

xhyi

m

i
ii

ii

t tt

ii



































 





























m

i
t

t

iti
t

t

s sst

t

t
t

xhyi
tt

tt

iD

Z

xfy
iD

xhxf

iD

hD

iti

1
1

1

1

)(:

)(1 where

,~
)(exp

)(

)()(

1
ln

2

1

)(

)()(








ht に自由度があるとはいえ、Dt

によって定まる t がより小さくな
る方がよい。すなわち、 Dt を参
照しながら、 ht を定めるべし

tt
t

t

fL

fL )1(2
))((

))((

1







逐次的アルゴリズムに変換(2)












)(if

)(if)(
)(1

iti

iti

t

t
t

xhye

xhye

Z

iD
iD

t

t





miD 1)(1 

0
1

ln
2

1








 


t

t
t 











 

t
tt xhxH)(sgn)(final 

])([Pr)(
)(:

iitDi
yxhi

tt yxhiD
t

iit

 




)()( tt hD

 



m

i
t iD

1
11

 






























m

i
t

t

iti
t

t

s sst

t

t
t

xhyi
tt

tt

iD

Z

xfy
iD

xhxf

iD

hD

iti

1
1

1

1

)(:

)(1 where

,~
)(exp

)(

)()(

1
ln

2

1

)(

)()(








))(exp(~~
)(

~
))(exp()(

~
)(

1

1
1

itti
tt

t

t

ittitt
t

xhy
ZZ

iD
Z

xhyiDZ
iD















学習により

 
 
 )(exp

)(exp

)(exp

1

itti

iti

iti

xhy

xfy

xfy








訓練誤差
 定理 [Freund and Schapire ’97]:

t を ½  t と書く. i.e. t = ½  t

この時

従って、もし t: t   > 0 なら

 注: AdaBoost は adaptive:
•  や T を事前に知っている必要はない

 TH 2
final 2exp)error(training 









 

t
tH 2

final 2exp)error(training 

訓練誤差は、初期分布（一様分布）で考えている
（それが与えられた問題だから）

6

証明（レポート課題）

   

 






















2

1
finalfinalTrain

2exp

2)(1
1

Error

t

m

i
ii xHy

m
H

 2

1

41

)1(2
))((

))((

t

tt
t

t

fL

fL



















m

i
ii xFy

m

FL

1

))(exp(
1
))((

2
11 41))((fL

0for 1)exp( xxx

トイ

第一巡目 第二巡目

第三巡目 最終仮説

7

Boosting Applet
http://www.cse.ucsd.edu/~yfreund/adaboost/index.html

マージンというもの
}1,1{;,  yRwx n)sgn(xw 予測 =

射影する

マージン

事例の個数
(Boosting時には
各仮説が各軸)

誤答 正答

マージン =)(xwy 

+

- + +
++

+

+

-

-
-

-
-

--

w
+ / - =))(sgn(xwy ))(sgn(yxw 

損失関数

損失, ロス, 誤り

正答

マージン
誤答

Adaboost =
)()(xwyxyF ee t  

0-1 loss

Logitboost
ln 1 eyFt (x) 

Brownboost
1

2
1 erf

yFt x  c  t

c  t





















Boosting の形式化

 所与の訓練データ集合 X={(x1,y1),…,(xm,ym)}

 yi{} 事例 xiX に対する正しいラベル

 for t = 1,…,T:
• {1,…,m} 上の分布 Dt を作成する

• 弱仮説を見出す

ht : X  {}

ただし Dt 上で小さい誤差 t あり

 最終仮説 Hfinal を出力



 

iit

t
yxhi

tiitDit iDyxh
)(:

)(])([Pr

一度に一軸ごと

 Adaboost は指数損失関数に対して 最急降下法
を適用する

 繰り返し一度につき, 一軸 (“弱い学習器”)追加.
 2進分類器 における弱学習= あてずっぽうより

ちょっとよい学習器.
 回帰における弱学習 – 未解明.

 事例に対する荷重 を用いて、弱学習器に降下
方向を教える

 これによって実際に 計算 できるようになる

良い弱学習器とは?
 弱学習器（達）は、

 属性・ラベル間のありうる関係のほとんどと（弱い）相関
が表現できるように、十分に柔軟でなければならない.

 荷重つき訓練誤差を最小化する仮説の空間が全探索が
できるくらい十分に小さくあるべき.

 過学習とならないよう小さくあるべき.
 ラベルの予測値が非常に効率よく計算できるべき.
 “狭い専門家” であってよい – 入力空間の小さい部分空

間内でのみ予測を行い, それ以外では 予測を控える (出
力 0)としてよい

8

汎化誤差の解析

通常の期待 or 予想:
 訓練誤差は、継続して、低下する（0になるかも）

 Hfinal が複雑になりすぎると、テスト誤差は、増大する
（オッカムの剃刀）

ある実験結果 [Schapire et al. 98]

 1,000 巡以降でもテスト誤差は増加しない
 (C4.5を用いているため) ノード数の合計 ~2,000,000

 訓練誤差が0となった後も、テスト誤差は減少を続ける

 オッカムの剃刀のいう単純な規則がよいというのは、誤り

(boosting on C4.5 on
“letter” dataset)

http://www.cs.princeton.edu/courses/archive/fall05/cos402/readings/boost-slides.pdf

（正規化）マージンからみると

アイデア: 分類の信頼度 (マージン) を考えよう:
 まず下記に注意

 定義: (x,y) のマージン:

]1,1[
)(

)(






t

t

t
tt

t
t

xh
xf





))(sgn()(final xfxH 






t
t

f

xfy
yx


)(

),(margin

),(margin yxf

0 +11

全 ht が正
しく出力

ht の半分が
正しく出力

全 ht が
誤って出力

前のスライドとは異なり、
正規化している

マージンの累積分布 [Schapire et al. 98]

epoch 5 100 1000
training error 0.0 0.0 0.0
test error 8.4 3.3 3.1
%margins0.5 7.7 0.0 0.0
Minimum margin 0.14 0.52 0.55

Boosting はマージンを最大化する

 次の損失関数を最小化することであった

 










i

yx

i i

xhy
xfy t

tiif
t

itti
ii eee

),(margin)(
)(

(xi,yi) のマージンに比例

マージンに基づく解析

汎化誤差を訓練事例のマージンの関数で抑える:

（Pr はデータ空間で、P^r は訓練データ上）

（Hが有限なら VC(H) ~ log |H| ）
（任意のθ>0 に対し、訓練事例分布上確率 1-δで成立）

 訓練事例マージン大  θが大きくとれる

 上界は学習エポック数に依存しない

 boosting は、マージンが最小の事例に着目し、当該事
例のマージンを増加させようとする













2

)VC(~
]),(r[marginP̂

]0),(Pr[marginerror




m

H
Oyx

yx

f

f













mm

dmd
O

)/1log()(log
2

2 


 が大きくとれれば、
これは小さくなる

上手く学習してこのような学
習サンプルがないように（ま
たは少ないように）する。

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods.
The Annals of Statistics, 26(5):1651-1686, 1998.

9

図示すると

マージン


2

)VC(

m

H








2

)VC(~

m

H
O

]),(r[marginP̂ yxf

SVM との関係

SVM: x を高次元空間に写像して、線形分
離する

+

- +
+

++

+

+

- -

--
-

- -

w--
++
+

++-

入力空間 R 高次元空間 h(x)

h(x)

SVM との関係 （続）

)2,0,0,5,1,10(









otherwise1

0)(if1
)(

xh
xH



),,,,,1()(5432 xxxxxxh 










otherwise1

1052if1
)(

25 xxx
xH

SVM との関係

 どちらもマージンを最大化する:

 SVM: ユークリッドノルム (L2)
 AdaBoost: マンハッタンノルム (L1)

 最適化や PAC による上界と関係がでてくる

1||||

||||

))((
minmax


 


ii

iw

xhy 


2||||

[Freund et al ‘98]

AdaBoost の実用的価値

 かなり速い

 単純かつ容易にプログラムできる

 チューニングパラメータは一個だけ (T)
 事前知識不要

 融通性: どんな分類器とも組合せ可能 (ニューラル
ネット, C4.5, …)

 有効性が証明済み (弱学習器の存在は仮定する)
• 発想の転換: 目標は、単に、random guessing よりよい

仮説を見つければよいだけ

 はずれ値も見つける

注意点はある

 性能は、データと当該弱学習器に依存

 AdaBoost が失敗するのは

 弱学習器が複雑すぎる (過学習)
 弱学習器が弱すぎる (t0 となるのが速すぎる)

 学習不足

 マージンが小  過学習

 経験的には, AdaBoost はノイズの影響を受けや
すいように思われる

 2
final 2exp)error(training tH 

どうしても、実際には
こうなってしまう

10

UCI ベンチマーク
比較

 C4.5 (Quinlan の決定木学習)
 Decision Stumps (切株. ノード一個)

UCI 結果[Schapire et al. 98]

Figure 3: Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set
of 27 benchmark problems as reported by Freund and Schapire [30]. Each point
in each scatterplot shows the test error rate of the two competing algorithms on
a single benchmark. The y-coordinate of each point gives the test error rate (in
percent) of C4.5 on the given benchmark, and the x-coordinate gives the error rate
of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates have
been averaged over multiple runs.

（多数回実験の）
平均テストエラー率

テキスト分類[Schapire&Singer 00]

 Decision stumps: 単語や短句の存在/不存在.
例:
“If the word Obama appears in the document predict

document is about politics”

データ: Reutersデータ: AP

他の比較 [Quinlan, ’96]

まとめ

 boosting は分類課題に有用

• 豊富な理論に裏付けられる

• 実験的にも、パフォーマンスの良さが確認ずみ

• しばしば (いつも、ではない) 過学習しにくい

• 応用事例多い

 しかし

• （得られた）分類器は遅い

• 結果は、分かりにくい

• ノイズに敏感なことあり

参考文献

 Leo Breiman. Prediction games and arcing classifiers.
Technical Report 504, Statistics Department, University of California at Berkeley, 1997.

 Yoav Fruend and Robert E Schapire. A decision-theoretic generalization of the on-line
learning and an application to boosting. Journal of Computer and System Sciences,
55(1):119-139, August 1997.

 Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. In Advanced
Lectures on Machine Learning (LNAI2600), 2003.

 Lev Reyzin (Advisor: Shapire, Robert) Analyzing Margins in Boosting Senior Independent
Work, Princeton University. 2004.

 Robert E. Schapire. The boosting approach to machine learning: An overview. In D. D.
Denison, M. H. Hansen, C. Holmes, B. Mallick, B. Yu, editors, Nonlinear Estimation and
Classification. Springer, 2003.

 Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting the margin: A
new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651-1686, 1998.

