情報意味論 コネクショニズム connectionism

櫻井彰人 慶應義塾大学理工学部 4

本日の内容

- ニューロンとは
- ニューロンのネットワーク, i.e. ニューラルネット ワーク
 - 長距離、階層的な構造
 - ローカルな構造
- モデル化
 - 単体
 - ネットワーク
- 使えるニューラルネットワーク

- ■もの凄い学習能力、適応能力
 - 運動、言語、芸術、技術、社会、、、
- ロバスト
 - 対損傷、対ノイズ、、

アイデアの宝庫(?)

- ひょっとして原理は簡単では?
 - 単純な素子(機能)の組み合わせ

背景

- 記号主義と非記号主義
- 記号主義
 - 1970年代~1980年代の一大潮流
 - 有効性と限界
- 非記号主義
 - 1980年代~1990年代のブーム
 - 夢と挫折
 - そして、復活

4

予めまとめ: ニューロンとは何か

- 神経細胞、実に多種多様
- ■「発火」と呼ばれる動作をする
- 論理ゲートと考えると、1kHz の素子
- 頻度で情報をコード(と昔は考えた)
 - 今は、様々な方法でコードしていると考えられている
- 一つ一つの動作は、Hodgkin-Huxley方程 式で、よく表現できる

ь

ニューロンとは?

• "There is no such thing as a typical neuron", Arbib, 1997

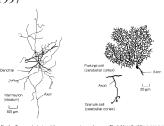
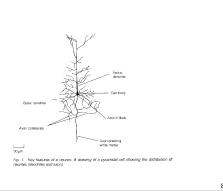
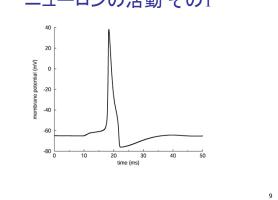


Fig. 1. The morphologies of three common types of neuron. The full length of the axons is a shown. The bilureshing axon of the granufe cell extends for several milimeters in each directic Note how the axon of the interneuron branches extensively.

多分典型的なニューロン



ニューロンの活動 その1



ニューロンの活動 その2

図 27 ネズミの味覚の神経線維に現われるインブルス・数字は食 塩のモル濃度(C. Pfaffmann)

時実利彦「脳の話」より

Hodgkin-Huxley方程式

$$C_{m} \frac{dV}{dt} = -g_{L}(V - E_{L}) - g_{Na}m^{3}h(V - E_{Na}) - g_{K}n^{4}(V - E_{K}) + I$$

$$\frac{dm}{dt} = \alpha_{m}(V)(1 - m) - \beta_{m}(V)m$$

$$\frac{dh}{dt} = \alpha_{h}(V)(1 - h) - \beta_{h}(V)h$$

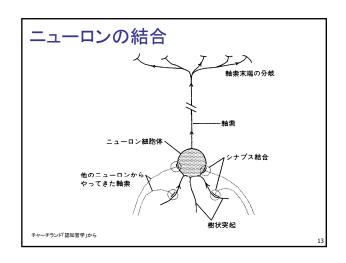
$$\frac{dn}{dt} = \alpha_{n}(V)(1 - n) - \beta_{n}(V)n$$

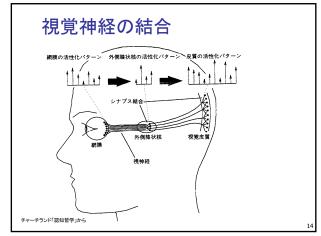
$$K \neq \forall \lambda, \lambda, \lambda \in \mathbb{R}$$

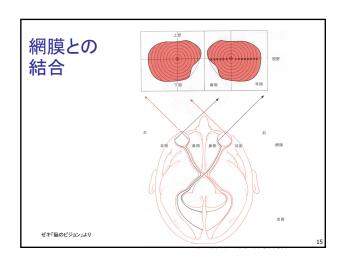
V: 膜電位、m, h(Na), n(K): チャンネルが開く確率

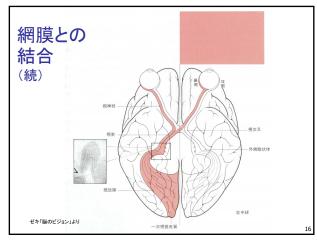
予めまとめ: ネットワーク

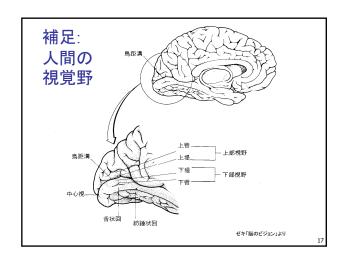
- シナプス結合を通じてネットワークを作る
 - Fan-in, fan-out が多い。 1万とも言われる
- ■「ネットワーク」らしい構造
 - 結構長距離結合: 視覚を例に。
- ■「固まり」: 脳表面での構造
 - 視覚野におけるコラム構造
 - 視覚野における階層構造
 - 歴史的発見と修正。

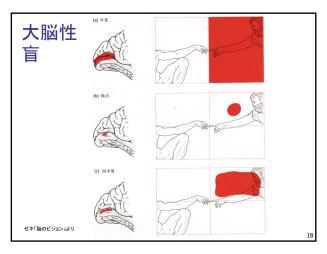


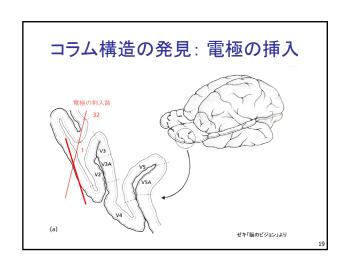


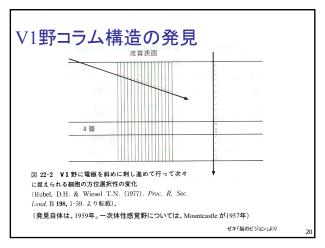


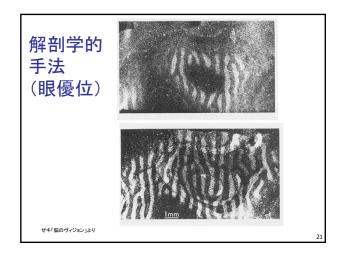


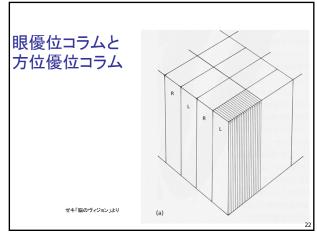


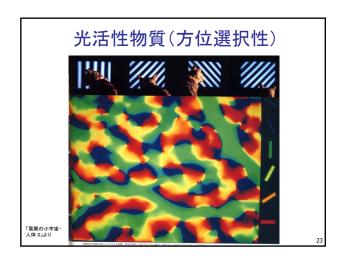


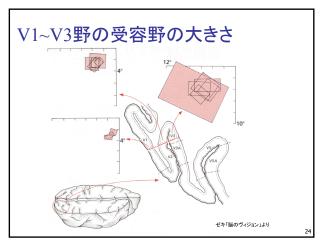






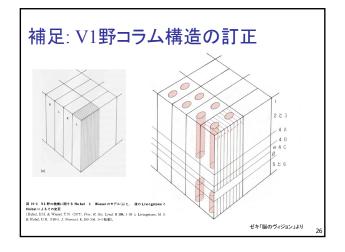


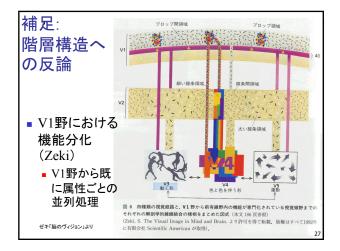


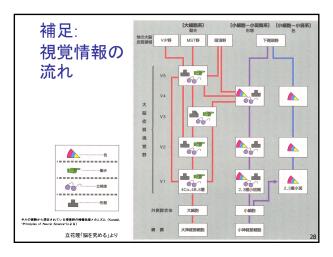


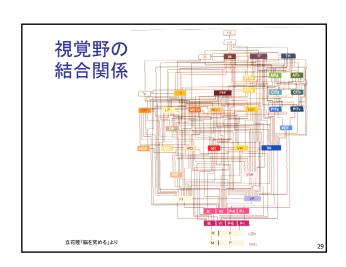
階層構造概念の発展

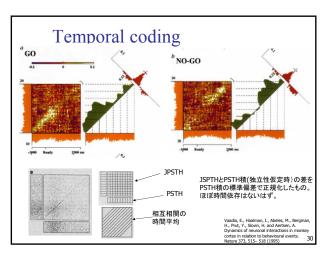
- Hubel & Wiesel 以前:
 - (一次) 視覚野で中継し、連合野で高次処理
- 高次視覚野におけるコラムと受容野の変化
 - V1→V2→V3→… といった階層構造
 - V1:特徴抽出(特に傾き)
 - V2: 対象受容野の拡大
 - V3: 形の特徴 ■ V4: 色
 - V5: 運動











予めまとめ: モデル化

- 個別素子: McCulloch Pitts モデル
 - 論理モデル、「電圧レベル」をモデル化
- ネットワーク: 階層
 - ■次第に抽象的に
- しかし現実とは大きく異なる
- 使えるネットーワークへ

ネットワークがモデル化できるか?

- できない。ニューロンモデルが複雑すぎる。
- 単純化する以外にない
 - 40年前の話ですから。
 - といっても、今でも事情はそうは変わらない

32

McCulloch and Pitts

 Warren S. McCulloch and Walter Pitts (1943) "A logical calculus of the ideas immanent in nervous activity", *Bulletin of Mathematical Biophysics*, 5: 115-133.

- ニューロンの非常に単純化した(しかし数学的な)モデル
- もしニューロンがこのようであれば、任意の関数が計算できることを示した

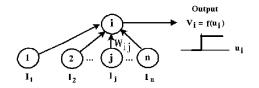
ı

福島「神経回路と情報処理」より

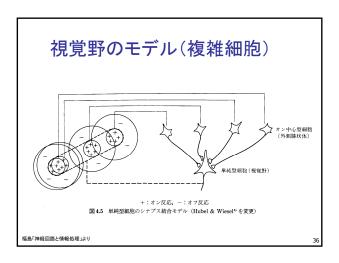
33

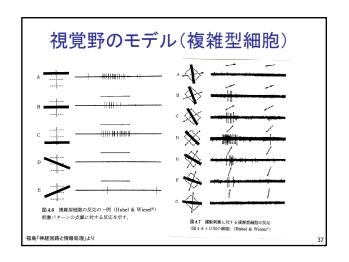
ニューロンのモデル

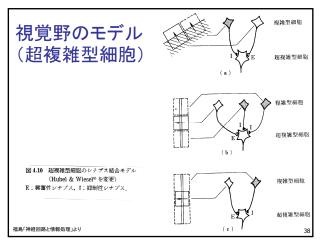
- 個々のニューロンは、入力値をある関数に従って処理する
- 初期のモデルは階段関数を用いた. 現在では、シグ モイド関数を用いることが多い

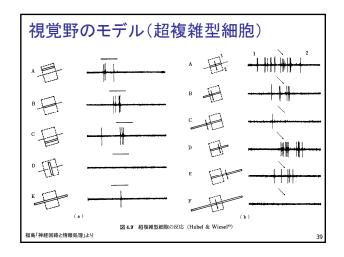


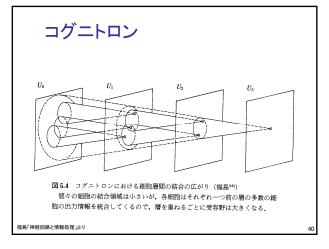
_

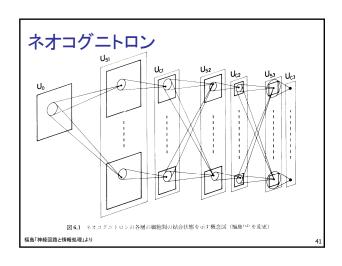


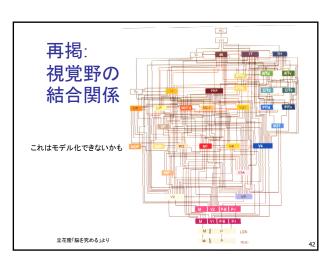












まとめ: 使えるネットワーク

- 役立つ: 構造と学習
 - 単体: Hebb の学習則
 - 一層の構造: Perceptron 学習則
 - 多層の構造: 誤差逆伝播
 - 相互結合(Hopfield/Boltzmann)
 - 相互結合(recurrent)

ネットワークがモデル化できるか?

- モデル化するには、
- 単純化する以外にない、といった。しかし、
 - 単純な feedforwar, 階層的構造ではない
 - 信号強度だけを考えればよい、というものでもない
- どうしているか
 - recurrent 結合、相互結合を設ける
 - feedforward ではなく、安定・時間発展・時系列という概念が入る
 - spike 型ニューロンによるモデル化
 - まだまだこれから

44

脳のモデル化ができるか?

- できない。
- と思う。
- 参考: コンピュータが(当分の間)脳にならない理由
 - active 素子の個数の違い
 - 結線数の違い
 - ソフトウェアの違い。
 - 真似するにせよしないにせよ、全くわかっていない。測定もできない
 - 大雑把には、測定できるようになってきている
 - cf.「ポスト・ヒューマン誕生―コンピュータが人類の知性を超えるとき」(原題 "The Singularity is Near") (レイ・カーツワイル、NHK出版, 2007年)

ニューロンにヒントを得た情報処理

- ニューラルネットは、ニューロンにヒントを 得た情報処理モデルというべき
- 脳について知りえたことより、大幅に簡単化されているのが、普通 とはいえ、イノベーションはしばしば脳研究から、例:
 - Spiking neural nets

46

ニューロンにヒントを得た情報処理

- ニューラルネットモデルは、超並列
 - 単純な処理装置の大量接続
- 記号処理とは異なった情報処理が行える
 - 異なる原始機能 (実行が容易) が使える
- 学習ができる

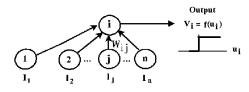
再掲: McCulloch and Pitts

 Warren S. McCulloch and Walter Pitts (1943) ``A logical calculus of the ideas immanent in nervous activity", *Bulletin of Mathematical Biophysics*, 5: 115-133.

- ニューロンの非常に単純化した(しかし数学的な)モデル
- もしニューロンがこのようであれば、任意の関数が計算できることを示した
- けれども,学習は...? あとで。

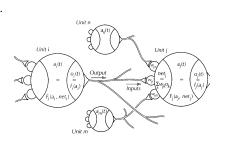
再掲: 処理系としてのニューロン

- 個々のニューロンは、入力値をある関数に従って処 理する
- 初期のモデルは階段関数を用いた、現在では、シグ モイド関数を用いることが多い



モデルニューロンのネットワーク

■ ニューロンの単純化した数学的モデルが考えられた



Hebb 則

- Donald O. Hebb (1949) "The Organization of Behavior", New York: Wiley
- "What fires together, wires together"
- 生物学的には首肯できる
- 今でも用いられることがある (普通は使わない), 「ニューロン間の結合荷重は、その活動の相関に依存 して変化する」という一般的な概念は、広く用いられて

新たな構造: パーセプトロン Perceptron

- Rosenblatt, F. (1957). "The perceptron: A perceiving and recognizing automaton (project PARA).", Technical Report 85-460-1, Cornell Aeronautical Laboratory.

 Rosenblatt, F. (1962). "Principles of Neurodynamics.", Spartan Books, New York.

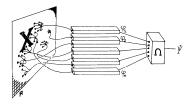


FIGURE 1. The one-layer perceptron analyzed by Minsky and Papert. (From *Perceptrons* by M. L. Minsky and S. Papert, 1969, Cambridge, MA: MIT Press. Copyright 1969 by MIT Press. Reprinted by permission.)

52

パーセプトロン

- 何ができるか?
 - 文字(アルファベット)認識
 - いくつかのパターン認識課題(形の認識等.)
 - しかも、素晴らしい学習則があった
 - パーセプトロン学習規則は、それが解くことができ る全ての課題について、解を発見することができる、 と証明できる

しかし

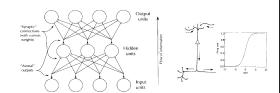
- できないものがある
 - パリティ
 - 結合性 ■ XOR 問題
- XOR 問題
 線形分離可能でない問題
 Marvin L. Minsky and Seymour Papert (1969), "Perceptrons", Cambridge, MA: MIT Press ネットワークにすればよいのでは?
- 正しい!
- McCulloch & Pitts ニューロンのネットワークは Turing 機械と等価; でも 'それで?' というのは、
 - 学習させる方法を知らない
 - 予想: 任意のネットワークを学習させるアルゴリズムは、単に、存在しない

PDP 現る

- "Perceptrons"のせいで、この分野の研究が20年遅滞したという。
- 転機: D.E. Rumelhart, J.L. McClelland, eds., "Parallel Distributed Processing: Explorations in the Microstructure of Cognition", MIT Press, 1986.
 - 論文の集成, 数学的なものから哲学的なものまで
 - うまくいった実験結果をたくさん示している一方:
 - 誤差逆伝播学習アルゴリズム back propagation learning algorithm: 結局のところ多くのニューラルネットワークの学習を可能とした.
 - [実は、類似の技法は、この間、発見されていた (Amari 1967; Werbos, 1974, "dynamic feedback"; Parker, 1982, "learning logic") ので、再発 見という言葉が適していよう。しかし、この分野を再出発させたことは 大きな成果である.]

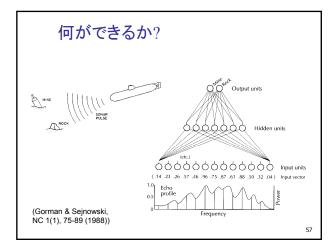
Back Propagation

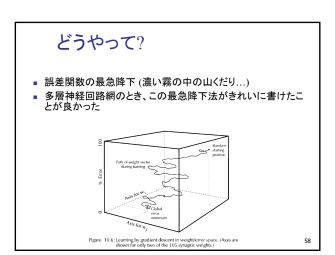
■ 適用範囲: multi-layer 'feed-forward' (only) networks:

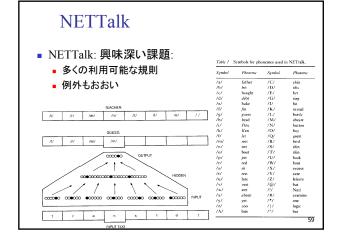


■ 結合荷重は、誤差を逆伝播したものに比例して修正される...

56





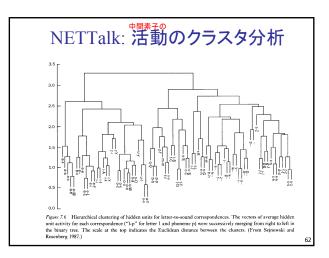


脱線: NETTalkと人との類似?

- NETTalk の学習過程で興味深い現象が観測された:
 - まず、子供のように、舌足らずでしゃべる
 - 広い規則を学習する, 一般化しすぎだが
 - 最後に、例外も学習するようになる
- 訓練データに対しては,98%の正解率
- 新規データに対しても、86%の正解率 (cf. DECTalk なら 95%の正解率; 10 年 vs. 一夏 だが!)

NETTalk

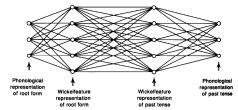
- NETTalk が神経生理学的に妥当であるとは、誰も言わない。
- けれども、もし脳に少しでも似ているなら、(ヒントを求めて)NETTalkがどうやって学習したかを少しでも知りたいのが人情であろう
- 実際,様々な統計的手法が開発され、ニューラル ネットの荷重と活動度により形成される「表現」が 調べられた
- NETTalk については、その手法の一つがクラス タ分析である...



NETTalk が学習したものは?

- NETTalk は、このクラスタ構造を直接教わることはなかった、データから自分で学習したのである
- 学習タスクを再実行するたびに(開始時の初期 荷重はランダムに定める)まったく異なる荷重と 活動度ベクトルが得られる。しかしクラスタ構造 はほぼ同一になる
- 注:ニューラルネットワークが学習するときには、 データは規則なり事実なりの形で記憶されること はない、分散した、記号化されていない表現 subsymbolic representations を用いている

英語動詞の過去形の学習

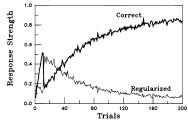


- •英語の規則動詞、不規則動詞の学習を行わせた •入カ:動詞原形、出カ:動詞の過去形
- ・音韻的知見に基づく
- •未学習動詞に対しても正しい出力を出す。

Rumelhart et al 「Parallel Distributed Processing」

6

脱線: 学習中の正解率の変化

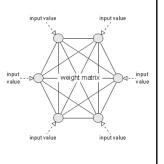


(注)「人間の過一般化とその解消の過程に類似している」との主張は、Chomsky派から極めて強い反論を受けた

Rumelhart et al [Parallel Distributed Processing.

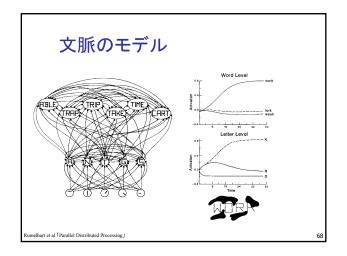
相互結合(Hopfield)

- 対称,自己結合なし
- 活動度非同期更新
- 重みの学習なし
- 平衡状態を求める
 - 各素子の活性値(0,1)を全 value エネルギー減少方向に変 化させる
 - あるエネルギー関数の最 小値に対応



相互結合(Boltsmann machine)

- (基本構造は) Hopfield と同じ
- ただし、活性値(0.1)の更新は確率的
 - 全エネルギー減少方向へ。増加する確率>0
 - このままでは、永遠に振動し続けるので、
 - 温度パラメータ Tを持たせ、
 - T を徐々に変化させることにより、大域的最小値へ収束させる(simulated annealing by Kirkpatrick)
- 学習も考えることができる



組合わせ最適化に関する注意

- Hopfield ネットワーク等でとける
- しかし、専門のアルゴリズムより遅い
- 本来は、ニューラルネットワークの苦手な計算である。
 - 問題固有の「テクニック」を計算に組み込みたい
- 但し、小さい問題なら「とにかく解ける」という特質はある

相互結合 (recurrent)

■ 階層型+
フィードバック
(離散時間遅 Context Input A)

(c) Output (d) Output Input A)

(d) Output (d) Output Input A)

(e) Output (d) Output Input A)

(f) Output (d) Output Input A)

(e) Output (d) Output Input A)

(f) Output (d) Output Input A)

(e) Output (d) Output Input A)

(f) Output (d) Output Input A)

(input Input I

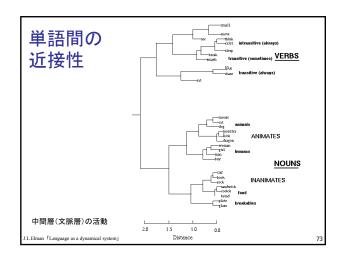
相互結合型(recurrent)

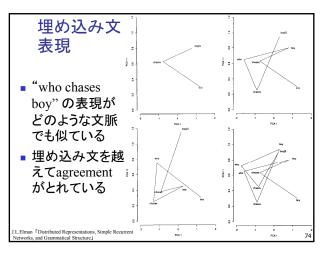
- 基本的な機能:状態機械(オートマトン)
 - 1 time unit 毎、入力値(feedback値も含め)に 基づき、次の活性値を決める
 - 時系列の分類、予測、変換等ができる
 - 不定長入力(例:文字列)上の関数(分類等) (feedforward では不定長入力は扱えない)
 - 有限状態とは限らない

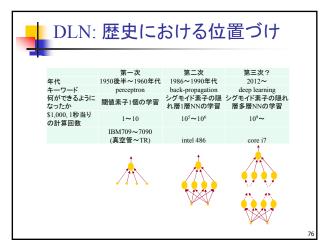
文法の学習(Elman)

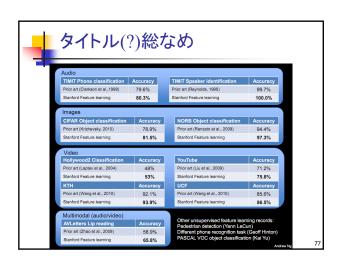
S → NP VP ···
NP → PropN | N | N RC
VP → V (NP)
RC → who NP VP | who VP (NP)
N → boy | girl | cat | dog | boys | girls | cats | dogs
PropN → John | Mary
V → chase | feed | see | hear | walk | live | chases |
feed | sees | hears | walk | live | chases |
feed | sees | hear | walk | live | chases |
feed | sees | hear | walk | live | chases |
feed | sees | hear | walk | live | chases |
feed | see | hear | walk | live | chases |
feed | see | hear | walk | live |
diditional restrictions:

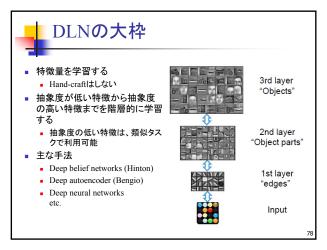
• number agreement between N & V within clause,
and (where appropriate) between head N &
subordinate |
v • verb arguments:
chase, feed → require a direct object
walk, live → preclude a direct object
walk, live → preclude a direct object
walk, live → preclude a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk, live → preclude a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk, live → preclude a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
subordinate |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases |
see, hear → optionally allow a direct object
walk | live | chases











まとめ

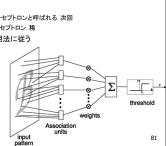
- ニューロンとは
- ニューロンのネットワーク, i.e. ニューラルネット ワーク
- モデル化
 - 単体
 - ネットワーク
- 使えるニューラルネットワーク
 - ■単体
 - 一層
 - 多層
 - 相互結合
 - Deep learning network

さて、実装の話に入ろう

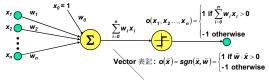
80

多義語: パーセプトロン

- パーセプトロン: 同じ言葉で別のものを指している
 - 線型閾値素子: 次のスライド
 - 元祖パーセプトロン: 下記. これが本当!
 - シグモイド素子: 次回
 - シグモイド素子のネットワーク: 多層パーセプトロンと呼ばれる. 次回
 - 線型閾値素子のネットワーク: 多層パーセプトロン. 稀
- 本講義では、習慣に従い「間違った」用法に従う
- 元祖パーセプトロン
 - Rosenblatt 1962
 - Minsky and Papert 1969



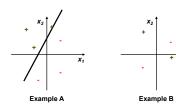
パーセプトロン Perceptron



- パーセプトロン Perceptron: 単一ニューロンのモデル
 - 別名 線型閾値素子 <u>L</u>inear <u>T</u>hreshold <u>U</u>nit (<u>LTU</u>) or <u>L</u>inear <u>T</u>hreshold <u>G</u>ate (<u>LTG</u>)
 - 素子への純入力 net input: 線型関数 $net = \sum_{i=1}^{n} w_i x_i$
 - 素子の出力: 純入力に<u>閾値関数 threshold function</u> を施したもの (<u>閾値 threshold</u> $\theta=w_0$)
 - 純入力に施して出力を得る関数を 活性化関数 activation function と呼ぶ パーセプトロンネットワーク Perceptron Networks
 - ・ パーセプトロンネット・ソーツ Perception Networks
 ・ パーセプトロン同士が 荷重つき結合 weighted links w, によって繋がっている
 - <u>M</u>ulti-<u>L</u>ayer <u>P</u>erceptron (<u>MLP</u>): 下の方

82

パーセプトロンの決定境界



- パーセプトロン: 重要な関数がいくつも簡単に表現できる
 - 論理関数 (McCulloch and Pitts, 1943)
- e.g., 簡単な荷重で AND(x₁, x₂), OR(x₁, x₂), NOT(x)
- 表現できない関数もある
 - e.g., 線型分離可能でないもの
 - 解: パーセプトロンのネットワーク

パーセプトロン学習アルゴリズム

- 学習規則 ≡ 訓練規則 training Rule
 - 教師付き学習に特有の話ではない
 - いつ、どこ: モデルの更新
- Hebbの学習則 Hebbian Learning Rule (Hebb, 1949)
 - アイデア: もし2個の素子が両方とも active ("firing")であれば、結合荷重は増加する
 - Fィナア: もしと個の素子が向方とも active (irring) であれば、結
 $w_{ij} = w_{ij} + ro_i o_j$,但しrは<u>学習係数 learning rate</u> で、定数である
 - 神経生理学的に, <u>ほぼ</u>、支持されている
- パーセプトロン学習アルゴリズム Perceptron Learning Rule (Rosenblatt, 1959)
- アイデア:各入カベクトルに対して出力値が与えられているなら、荷重を漸進的に更新することにより、 当該出力値が出力できるようになる
- 2値出力 (Bool値, Boolean-valued) を仮定; 単一パーセプトロン素子
- $w_i \leftarrow w_i + \Delta w_i$ $\Delta w_i = r(t-o)x_i$

但 $_{I}=c(x)$ は目標出力値、 $_{o}$ はパーセプトロンの現在の出力値、 $_{r}$ は学習係数、正定数であれば何でも良い、 $_{I}$ でよいので、実は、パーセプトロン学習アルゴリズムでは、 $_{r}$ は不要

D が<u>練型分離可能 linearly separable</u> であれば、収束する. r が十分小さいことを条件とする説明もあるがそれは誤り

パーセプトロン学習アルゴリズム

- 単純な勾配降下 Gradient Descent アルゴリズムである
- このアイデアは、適当な表現を用いれば、概念学習にも記号学習にも適用可能
- アルゴリズム Train-Perceptron $(D \equiv \{ \langle x, t(x) \equiv c(x) \rangle \})$
 - 荷重 w_i をランダム値に初期化する

// パーセプトロン時は0に初期化してもよい

WHILE 正しい出力をしない事例がある DO

FOR それぞれの事例 $x \in D$ 現在の出力 o(x) を計算

> FOR i = 1 to n $w_i \leftarrow w_i + r(t - o)x_i$

// perceptron learning rule. r is any positive #

- パーセプトロン学習可能性
- 復習: $h \in H$ のときのみ学習可能 i.e., 線型分離可能 linearly separable (LS) functions
- Minsky and Papert (1969) Perceptrons: 元祖パーセプトロンの表現・学習の限界を示した
 注: 素子一個では parity (n・変数 XOR: x₁ ⊕ x₂ ⊕ ... ⊕ x₂) 関数が表現できない、というのは既知
 - e.g., 画像の <u>symmetry</u>, <u>connectedness</u> は(元祖パーセプトロンで)表現できない
 - "Perceptrons"のせいでANN 研究が10年近く遅れたといわれもするが、どこまで真実か。

線型分離

- 定義
 - f(x) = 1 if $w_1 x_1 + w_2 x_2 + ... + w_n x_n \ge 0$, 0 otherwise - θ: 閾値
- 線型分離可能か?
 - 注: D が線型分離可能だからといって 真の概念 c(x) が線型分離可能とは限らない
 - 選言 disjunction: $c(x) = x_1' \lor x_2' \lor \dots \lor x_m'$
 - $m \text{ of } n: c(x) = \text{at least 3 of } (x_1', x_2', ..., x_m')$
 - 排他的 exclusive OR (XOR): c(x) = x₁⊕x₂
 - 一般の DNF: $c(x) = T_1 \vee T_2 \vee ... \vee T_m$; $T_i = l_1 \wedge l_2 \wedge ... \wedge l_k$
- 表現の変換
 - 線型分離可能でない問題を線型分離可能な問題に変換できるか?
 - それは意味のあることなのか? 現実的なのか?
 - 現実問題の重要な部分を占めるのか?

86

0

パーセプトロン学習の収束

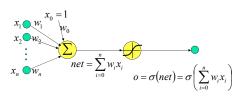
- パーセプトロン学習の収束定理
 - 主張: もし訓練データと consistent な荷重集合があれば (i.e., データが線型分離可能なら), パー ヤプトロン学習アルゴリズムは収束する
 - 証明:探索空間が限界のある順序をなしている("楔の幅"が厳密に減少していく) 参照 Minsky and Papert, 11.2-11.3
 - 注意 1: 収束までの平均時間は?
 - 注意 2: もし線型分離可能でなければどうなるのか?
- パーセプトロン循環定理
 - 主張、訓練データが練型分離可能でなければパーセプトロン学習アルゴリズムにより得られる 荷重ベクトルは、ある有界集合内に留まる、荷重が整数ベクトルなら、有限集合内に留まる。
 - <u>証明</u>: もし十分に絶対値が大きい荷重ベクトルから始めると, 絶対値は殆ど大きくなれないこと が示せる; 訓練事例の次元 n の数学的帰納法による — Minsky and Papert, 11.10
- よりロバストに、またより表現力を上げるには?
 - 目的 1: もっとも良い近似を発見するアルゴリズムの開発
 - 目的 2: 表現の制約を超える新しいアーキテクチャの開発

87

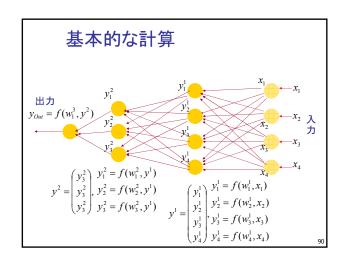
他のモデル

- perceptron も非線形モデルである。
 - 線形関数と階段関数
- 階段関数は微分不能故、扱いにくい
 - 微分可能にできないか?
- フィードフォワードは単純すぎ
 - フィードバックつき
 - 相互結合
- 教師なし学習であるべき
 - 自己組織化型

シグモイド素子



極めて頻繁に使われる σ : $\sigma(x) \equiv \frac{1}{1+e^{-x}}$



ニューラルネットの原理 ● 一側面: 関数近似・回帰である ● 例: 1入力・1出力とする

