
2004/04/19

© All Rights Reserved. A. Sakurai 2004

1

プログラミング言語 第八回

担当： 篠沢 佳久
櫻井 彰人

平成23年 6月20日

2

本日の内容

配列

宣言

代入

要素の参照方法

練習問題①～⑤

3

配列とは

配列とは

配列の宣言

4

配列の必要性

x1=5, x2=4, x3=3, ・・・ , x100=10
100個の変数の合計値を求めたい

sum=x1+x2+x3・・・+x100

乱数を1000個生成し，変数に格納し，処
理したい

「配列」を利用

5

今回は配列

配列とは、普通、一次元の表、二次元の表、
三次元の表、、、、、のこと

Ruby の場合は、ちょっと、違う

｢列」だと思ってください。

値の列、場所の列

博識の方へ:
Ruby の配列は、CやJavaの配列とは大きく異なります。

（Lisp を源流とする）リスト構造（の発展型）と考えてよい。

身近なところでは、Mathematica のリストとそっくりです

6

こんな具合です。

定数:
["Perl", "Python", "Ruby", "Scheme"]

変数への代入:
names = ["Perl", "Python", "Ruby", "Scheme"]

印字: (print は目的(?)にあいません)
p ["Perl", "Python", "Ruby", "Scheme"]

irb(main):016:0> p ["Perl", "Python", "Ruby", "Scheme"]
["Perl", "Python", "Ruby", "Scheme"]
=> nil
irb(main):017:0> puts ["Perl", "Python", "Ruby", "Scheme"]
Perl
Python
Ruby
Scheme
=> nil
irb(main):018:0> print ["Perl", "Python", "Ruby", "Scheme"]
PerlPythonRubyScheme=> nil
irb(main):019:0>

2004/04/19

© All Rights Reserved. A. Sakurai 2004

7

配列の要素①

names = ["Perl", "Python", "Ruby", "Scheme"]

names

0 "Perl"

1 "Python"

2 "Ruby"

3 "Scheme"

イメージ的には表計算のセル

names[0]

names[1]

names[2]

names[3]

配列名

要素番号
（インデックス）

要素番号は0から始まる

8

（参考）表計算ソフトのセル

A1="Perl"

A2="Python"

A3="Ruby"

A4="Scheme"

9

配列の要素②
irb(main):004:0> names = ["Perl", "Python", "Ruby", "Scheme"]
=> ["Perl", "Python", "Ruby", "Scheme"]
irb(main):005:0> p names[0]
"Perl"
=> nil
irb(main):006:0> p names[1]
"Python"
=> nil
irb(main):007:0> p names[2]
"Ruby"
=> nil
irb(main):008:0> p names[3]
"Scheme"
=> nil
irb(main):009:0> p names[4]
nil
=> nil

names[4]には値が
代入されていない
→nil となる

10

配列の宣言

names = ["Perl", "Python", "Ruby", "Scheme"]

a = [0 , 2 , 4 , 6 , 8]

配列名 = [値1 , 値2 , ・・・ , 値n]

a

0 0

1 2

2 4

3 6

4 8

11

配列の要素③

a = [0 , 2 , 4 , 6 , 8]

配列名[要素番号]

配列の要素数

配列名.length

a

0 0

1 2

2 4

3 6

4 8

a[0]

a[1]

a[2]

a[3]

a[4]

この配列のa.lengthの値は5

irb(main):001:0> names = ["Perl", "Python", "Ruby", "Scheme"]
=> ["Perl", "Python", "Ruby", "Scheme"]
irb(main):002:0> names.length
=> 4

12

配列の要素への代入①

names = ["Perl", "Python", "Ruby", "Scheme"]
names[0] = "C"
names[3] = "Java"

names

0 "Perl"

1 "Python"

2 "Ruby"

3 "Scheme"

配列名[要素番号] = 値

names

0 "C"

1 "Python"

2 "Ruby"

3 "Java"

2004/04/19

© All Rights Reserved. A. Sakurai 2004

13

配列の要素への代入②

irb(main):014:0> names = ["Perl", "Python", "Ruby",
"Scheme"]

=> ["Perl", "Python", "Ruby", "Scheme"]
irb(main):015:0> names[0] = "C"
=> "C"
irb(main):016:0> names[3] = "Java"
=> "Java"
irb(main):017:0> p names
["C", "Python", "Ruby", "Java"]
=> nil

14

試してみよう①

irb(main):001:0> a = [1,2,3,4,5]
=> [1, 2, 3, 4, 5]
irb(main):002:0> p(a)
[1, 2, 3, 4, 5]
=> nil
irb(main):003:0> print(a)
12345=> nil
irb(main):004:0> puts(a)
1
2
3
4
5
=> nil

表示の違いに注目!

p(配列名)
print(配列名)
puts(配列名)
()はなくてもよい

15

試してみよう②
irb(main):001:0> a = [1,2,3,4,5]
=> [1, 2, 3, 4, 5]
irb(main):002:0> p(a)
[1, 2, 3, 4, 5]
=> nil
irb(main):003:0> print(a)
12345=> nil
irb(main):004:0> puts(a)
1
2
3
4
5
=> nil
irb(main):005:0> a[0]
=> 1
irb(main):006:0> a[1]
=> 2

irb(main):007:0> a.length
=> 5
irb(main):008:0> a[a.length-1]
=> 5
irb(main):009:0> a[a.length]
=> nil
irb(main):010:0> a[a.length+1]
=> nil
irb(main):011:0> a.length
=> 5
irb(main):012:0> a[7] = 77
=> 77
irb(main):013:0> p(a)
[1, 2, 3, 4, 5, nil, nil, 77]
=> nil

注目!

a[5]，a[6]には値が
代入されていない
→nil となる

16

Ruby の配列は柔軟

すでに存在する要素に代入できる

これは当たり前

まだ「ない要素」に代入すると、配列を拡
張！して（当該要素を作って）くれる

irb(main):006:0> abc = ["a","b","c"]
=> ["a", "b", "c"]
irb(main):007:0> abc[3] = "d"
=> "d"
irb(main):008:0> abc
=> ["a", "b", "c", "d"]
irb(main):009:0> abc[10] = "k"
=> "k"
irb(main):010:0> abc
=> ["a", "b", "c", "d", nil, nil, nil, nil, nil, nil, "k"]
irb(main):011:0>

注目!

Ruby の配列は柔軟

17

abc = ["a","b","c"]

abc

0 a

1 b

2 c

abc[3] = "d"

abc

0 a

1 b

2 c

3 d

abc[10] = "k"

abc
0 a

1 b
2 c
3 d

4 nil
5 nil
6 nil
7 nil

8 nil
9 nil

10 k
abc[4]からabc[9]の値はnilとなる

18

各要素に代入する（失敗編）

irb(main):062:0> primes[0]=2
NameError: undefined local variable or method `primes' for main:Object

from (irb):62
from :0

irb(main):063:0>

あれ？

注目!

いろいろややこしい事情があるのです。

Ruby では（Rubyに限らずどの言語でも）、未定義の変数が使われるとエラー

Ruby では「使う」以外に現れると、「これから使うぞ！」という宣言と考える

Ruby では、左辺に現れる以外は、「使う」ことに相当

従って、新しい名前を左辺に書くと、普通は、「これから使うぞ！」という宣言になる。

（だから問題は発生しない）

しかし、配列の要素として現れる（ primes[0])と「使う」ことになってしまう

（ないものをいきなり使うことはできない。使おうとすればエラー！）

2004/04/19

© All Rights Reserved. A. Sakurai 2004

19

配列だということを教える①

もちろん、教える相手は Ruby

abc = Array.new(5)

irb(main):073:0> abc = Array.new(5)
=> [nil, nil, nil, nil, nil]
irb(main):074:0>

irb(main):075:0> abc[3]=333
=> 333
irb(main):076:0> abc
=> [nil, nil, nil, 333, nil]
irb(main):077:0>

注目!

注目!

配列名=Array.new(要素数）
要素数分の配列を用意する

20

配列だということを教える②

abc = Array.new(5)

abc

0 nil

1 nil

2 nil

3 nil

4 nil

配列名abc
要素数5個を用意する

abc[0]からabc[4]まで
値は入っていない（nil）

配列だということを教える③

要素数も分からない場合は？

配列名=[] と宣言する

21 22

配列だということを教える③

配列名=[]

x=[]
x[0] = 3
x[1] = 5

irb(main):008:0> x=[]
=> []
irb(main):009:0> x[0] = 3
=> 3
irb(main):010:0> x[1] = 5
=> 5
irb(main):011:0> p x
[3, 5]
=> nil

注目!

xが配列であることを宣言

23

配列の宣言のまとめ①

要素が分かっている場合
配列名 = [値1, 値2, … , 値n]

要素数のみが決まっている場合
配列名 = Array.new(要素数)

要素数が決まっていない場合
配列名 = []

配列の宣言のまとめ②

24

要素数のみが決まっている場合
a=Array.new(3)
a[0] = 3
a[1] = 4
a[2] = 1

要素数が決まっていない場合
a=[]
a[0] = 3
a[1] = 4
a[2] = 1

a

0 3

1 4

2 1

要素が分かっている場合
a = [3,4,1]

2004/04/19

© All Rights Reserved. A. Sakurai 2004

25

試してみよう２

irb(main):001:0> a[3]
NameError: undefined local variable or method `a' for main:Object

from (irb):1
from :0

irb(main):002:0> x = a[2]
NameError: undefined local variable or method `a' for main:Object

from (irb):2
from :0

irb(main):003:0> a = Array.new(5)
=> [nil, nil, nil, nil, nil]
irb(main):004:0> a[10]
=> nil
irb(main):005:0> a
=> [nil, nil, nil, nil, nil]

配列名はa
要素数は5個と宣言

配列aは宣言されていない

その他の参照方法

配列名[n..m]
n番目からm番目の要素を参照する

配列名[n,length]
n番目からlength個の要素を参照する

26

その他の参照方法（例①）

27

irb(main):001:0>
x=["A","B","C","D","E"]
=> ["A", "B", "C", "D", "E"]
irb(main):002:0> x[2..4]
=> ["C", "D", "E"]
irb(main):003:0> x[1..3]
=>["B", "C", "D"]
irb(main):006:0> x[3..10]
=> ["D", "E"]

配列 ｘ

0 A

1 B

2 C

3 D

4 E

要素番号は4までしか存在しない

その他の参照方法（例②）

28

irb(main):001:0>
x=["A","B","C","D","E"]
=> ["A", "B", "C", "D", "E"]
irb(main):007:0> x[2,2]
=> ["C", "D"]
irb(main):008:0> x[0,3]
=> ["A", "B", "C"]

配列 ｘ

0 A

1 B

2 C

3 D

4 E

29

配列と繰り返し

配列の要素の参照方法

30

配列の要素の参照方法①

names = ["Perl", "Python", "Ruby", "Scheme"]

names

0 "Perl"

1 "Python"

2 "Ruby"

3 "Scheme"

names[0]～names[3]まで
順番に参照するには？

names[0]

names[1]

names[2]

names[3]

2004/04/19

© All Rights Reserved. A. Sakurai 2004

31

配列の要素の参照方法①'

names = ["Perl", "Python", "Ruby", "Scheme"]
print(names[0])
print(names[1])
print(names[2])
print(names[3])

繰り返しを用いて記述する

32

配列の要素の参照方法②

配列の要素の参照方法には

１．要素番号を用いて要素の値を取り出す方法

２．要素の値を直接取り出す方法

があります

33

要素番号を用いて一つずつ取り出す

a=[1,3,5,7,9]
5.times{ |i|

print(a[i] , "¥n")
}

a=[1,3,5,7,9]
a.length.times{ |i|

print(a[i] , "¥n")
}

i には0,1,2,3,4が代入される

a[0],a[1],a[2],a[3],a[4]と
参照される

a.length=5
C:¥Ruby>ruby sample.rb
1
3
5
7
9

34

irb(main):033:0> names=["Perl", "Python", "Ruby",
"Scheme"]
=> ["Perl", "Python", "Ruby", "Scheme"]
irb(main):034:0> 4.times { | i | print("#{i} 番目は
#{names[i]}¥n") }
0 番目は Perl
1 番目は Python
2 番目は Ruby
3 番目は Scheme
=> 4
irb(main):035:0>

要素番号を用いて一つずつ取り出す

names=["Perl", "Python", "Ruby", "Scheme"]
4.times { | i | print("#{i} 番目は #{ names[i] }¥n") }

注目!

i には0,1,2,3と代入される

names[0], names[1],
names[2],names[3]と
参照される

35

要素番号を用いて一つずつ取り出す（続）

names=["Perl", "Python", "Ruby", "Scheme"]
names.length.times { | i | print("#{i} 番目は #{ names[i] }¥n") }

注目!

irb(main):035:0> names=["Perl", "Python", "Ruby", "Scheme"]
=> ["Perl", "Python", "Ruby", "Scheme"]
irb(main):036:0> names.length.times { | i | print("#{i} 番目は #{ names[i] }¥n"
) }

0 番目は Perl
1 番目は Python
2 番目は Ruby
3 番目は Scheme
=> 4

names.length=4

36

要素番号を用いて一つずつ取り出す
（続々）

a=[1,3,5,7,9]
(0..4).each{ |i|

print(a[i] , "¥n")
}

a=[1,3,5,7,9]
(2..4).each{ |i|

print(a[i] , "¥n")
}

i には0,1,2,3,4が代入される

i には2,3,4が代入される

a[0],a[1],a[2],a[3],a[4]と
参照される

a[2],a[3],a[4]と参照される

2004/04/19

© All Rights Reserved. A. Sakurai 2004

37

要素番号を用いて一つずつ取り出す
（続々）

a=[1,3,5,7,9]
(0..4).each{ |i|

print(a[i] , "¥n")
}

a=[1,3,5,7,9]
(2..4).each{ |i|

print(a[i] , "¥n")
}

C:¥Ruby>ruby sample.rb
1
3
5
7
9

C:¥Ruby>ruby sample.rb
5
7
9

38

要素番号を用いて一つずつ取り出す
（続々）

a=[1,3,5,7,9]
(0..a.length-1).each{ |i|

print(a[i] , "¥n")
}

a=[1,3,5,7,9]
(0..a.length).each{ |i|

print(a[i] , "¥n")
}

C:¥Ruby>ruby sample.rb
1
3
5
7
9

a.length=5

C:¥Ruby>ruby sample.rb
1
3
5
7
9
nil

a[5]の値はnil

39

要素番号を用いて一つずつ取り出す①

a

0 0

1 2

2 4

3 6

4 8

a[0]

a[1]

a[2]

a[3]

a[4]

この順番に要素を取り出したい

配列の長さ.times{ |i|
配列[i]の処理

}

i は0,1,2,3,4 と代入されるため
a[0], a[1], a[2], a[3], a[4]
となる

a.length.times{ |i|
print(a[i] , "¥n")

}

timesを用いる場合

40

要素番号を用いて一つずつ取り出す②

a

0 0

1 2

2 4

3 6

4 8

a[0]

a[1]

a[2]

a[3]

a[4]

この順番に要素を取り出したい

(0..配列の長さ-1).each{ |i|
配列[i]の処理

}

i は0,1,2,3,4 と代入されるため
a[0], a[1], a[2], a[3], a[4]
となる

(0..a.length-1).each{ |i|
print(a[i] , "¥n")

}

eachを用いる場合

41

要素を直接一つずつ取り出す

[1,3,5,7,9].each{ |i|
print(i , "¥n")

}

[値1,値2,…,値n].each{ |i|
print(i , "¥n")

} i に値1,値2,…値nが代入される

i に1,3,5,7,9が代入される

要素を直接一つずつ取り出す

42

a=[1,3,5,7,9]
a.each{ |i|

print(i , "¥n")
}

[1,3,5,7,9].each{ |i|
print(i , "¥n")

}
C:¥Ruby>ruby sample.rb
1
3
5
7
9

i には1,3,5,7,9と代入される

2004/04/19

© All Rights Reserved. A. Sakurai 2004

43

要素を直接一つずつ取り出す

["Perl", "Python", "Ruby", "Scheme"].each { | lang |
print("I like ", lang, "¥n")

} 注目!

irb(main):028:0> ["Perl", "Python", "Ruby", "Scheme"].each
irb(main):029:1* { | lang | print("I like ", lang, "¥n")
irb(main):030:1> }
I like Perl
I like Python
I like Ruby
I like Scheme
=> ["Perl", "Python", "Ruby", "Scheme"]

lang に "Perl" , "Python" , "Ruby" ,
"Scheme" と代入される

44

要素を直接一つずつ取り出す（続）

names=["Perl", "Python", "Ruby", "Scheme"]
names.each { | lang | print("I like #{lang}¥n") }

irb(main):030:0> names=["Perl", "Python", "Ruby", "Scheme"]
=> ["Perl", "Python", "Ruby", "Scheme"]
irb(main):031:0> names.each { | lang | print("I like #{lang}¥n") }
I like Perl
I like Python
I like Ruby
I like Scheme
=> ["Perl", "Python", "Ruby", "Scheme"]

前ページと同じ

45

要素を直接一つずつ取り出す（続）

配列名=[値1,値2,…,値n]
配列名.each{ |i|

print(i , "¥n")
}

a=[1,3,5,7,9]
a.each{ |i|

print(i , "¥n")
}

i に値1,値2,…値nが代入される

i に1,3,5,7,9が代入される
46

まとめ①

要素番号で要素の値を参照したい場合

a.length.times{ |i|
print(a[i] , "¥n")

}

(0..a.length-1).each{ |i|
print(a[i] , "¥n")

}

a=[1,3,5,7,9]

47

まとめ②

要素を直接参照したい場合

a=[1,3,5,7,9]
a.each{ |i|

print(i , "¥n")
}

[1,3,5,7,9].each{ |i|
print(i , "¥n")

}

48

試してみよう 3

irb(main):001:0> a = [11,12,13,14,15]
=> [11, 12, 13, 14, 15]
irb(main):002:0> a.length
=> 5
irb(main):003:0> a.each{ |x| print("#{x} ") }
11 12 13 14 15 => [11, 12, 13, 14, 15]
irb(main):004:0> (0..a.length-1).each{ |i| puts("#{i}:
#{a[i]} ") }
0: 11
1: 12
2: 13
3: 14
4: 15
⇒0..4

a.length-1 であることに注意

2004/04/19

© All Rights Reserved. A. Sakurai 2004

49

試してみよう 3

irb(main):005:0> (3..a.length+1).each{ |i| puts("#{i}:
#{a[i]} ") }
3: 14
4: 15
5:
6:
=> 3..6
irb(main):006:0> n=88; [2,3,5,7,11].each{ |p| puts(
"#{n} is divisible by #{p}") if n%p==0 }
88 is divisible by 2
88 is divisible by 11
=> [2, 3, 5, 7, 11]

a[a.length]

a[a.length+1]

a.length 以上の要素は

存在しない

前ページの続き

変数pには2,3,5,7,11が代入される

50

試してみよう 4
names=["Perl", "Python", "Ruby", "Scheme"]
names[0] = "Ada"
names.length.times { | i |

print("#{i} 番目は #{ names[i] }¥n")
}

irb(main):059:0> names=["Perl", "Python", "Ruby", "Scheme"]
=> ["Perl", "Python", "Ruby", "Scheme"]
irb(main):060:0> names[0] = "Ada"
=> "Ada"
irb(main):061:0> names.length.times { | i |
print("#{i} 番目は #{ names[i] }¥n"
) }

0 番目は Ada
1 番目は Python
2 番目は Ruby
3 番目は Scheme
=> 4

注目!

51

試してみよう 5
irb(main):001:0> a = ["a","b","c"]
=> ["a", "b", "c"]
irb(main):002:0> a[0] = "x"
=> "x"
irb(main):003:0> a
=> ["x", "b", "c"]
irb(main):004:0> a[7]="h"
=> "h"
irb(main):005:0> a
=> ["x", "b", "c", nil, nil, nil, nil, "h"]

a[3]からa[6]にはnilが代入

52

試してみよう 5

a

0 "x"

1 "b"

2 "c"

3 nil

4 nil

5 nil

6 nil

7 "h"

a=["x" , "b" , "c"]

a[7] ="h"

a[3] から a[6] は nil
（値がない）

53

試してみよう 5

irb(main):005:0> a=["x" , "b" , "c"]
irb(main):006:0> a[7] = "h"
irb(main):007:0> a.each{ |x| x="0" }
=> ["x", "b", "c", nil, nil, nil, nil, "h"]
irb(main):008:0> a
=> ["x", "b", "c", nil, nil, nil, nil, "h"]
irb(main):009:0> (0..a.length-1).each{ |i| a[i]="0" }
=> 0..7
irb(main):010:0> a
=> ["0", "0", "0", "0", "0", "0", "0", "0"]

配列aの要素は変化しない

54

試してみよう 5
a = [1 , 2 , 3 , 4 , 5]
a.each{ |x|

print(" 代入前 " , x , "¥n")
x="0"
print(" 代入後 " , x , "¥n")

}
p a

C:¥ruby>ruby sample.rb
代入前 1
代入後 0
代入前 2
代入後 0
代入前 3
代入後 0
代入前 4
代入後 0
代入前 5
代入後 0

[1, 2, 3, 4, 5]

x にはa[0]～a[4]の値が
代入されるだけで配列の
要素を直接変更するわけ
ではない

2004/04/19

© All Rights Reserved. A. Sakurai 2004

55

試してみよう 5
a = [2 , 3 , 5 , 8 , 4]
(0..a.length-1).each{ |i|

print("代入前" , a[i] , "¥n")
a[i]="0"
print("代入前" , a[i] , "¥n")

}
p a

C:¥ruby>ruby sample.rb
代入前2
代入前0
代入前3
代入前0
代入前5
代入前0
代入前8
代入前0
代入前4
代入前0
["0", "0", "0", "0", "0"]

配列の要素を直接変更し
ている

56

変数と配列の裏事情

names[0]:
names[1]:
names[2]:

ユーザ（皆さんです）が、変数や配列を使いたいというと、

コンピュータは「場所」を確保する必要あり

names[7]:

"Mercury"

"Venus"

"Earth"

" Neptune"

name:

"Sun"

配列の大きさが変わると、Ruby は配列を作り直している。
古い場所はそのまま捨て置かれる。
すなわち、無駄が発生している。ユーザには見えないが。

names[0]:
names[1]:
names[2]:

"Mercury"

"Venus"

"Earth"

names[7]="Neptune"

57

配列要素には何が代入できるか

変数に代入できるものなら何でも代入できる
整数、浮動小数点数、文字列、配列！
しかも、混在！できる

CやJavaでは「混在」はできない

irb(main):011:0> abc = ["a","b","c"]
=> ["a", "b", "c"]
irb(main):012:0> abc[1] = 111
=> 111
irb(main):013:0> abc
=> ["a", 111, "c"]
irb(main):014:0> abc[3] = 3.33
=> 3.33
irb(main):015:0> abc
=> ["a", 111, "c", 3.33]
irb(main):016:0> abc[4] = [4,5,6]
=> [4, 5, 6]
irb(main):017:0> abc
=> ["a", 111, "c", 3.33, [4, 5, 6]]

注目!

58

試してみよう 6

irb(main):011:0> abc = ["a","b","c"]
=> ["a", "b", "c"]
irb(main):012:0> abc[1] = 111
=> 111
irb(main):013:0> abc
=> ["a", 111, "c"]
irb(main):014:0> abc[3] = 3.33
=> 3.33
irb(main):015:0> abc
=> ["a", 111, "c", 3.33]
irb(main):016:0> abc[4] = [4,5,6]
=> [4, 5, 6]
irb(main):017:0> abc
=> ["a", 111, "c", 3.33, [4, 5, 6]]

前のスライドと同じです

要素と要素番号を同時に取り出す方法

59

names = ["Perl", "Python", "Ruby", "Java"]

names.each_with_index{ |x,i|
print(i , "番目の要素: " , x , "¥n")

}

C:¥Ruby>ruby sample.rb
0番目の要素: Perl
1番目の要素: Python
2番目の要素: Ruby
3番目の要素: Java

xには配列xの要素の値が代入される

iには要素番号（0～3）が代入される

60

要素と要素番号を同時に取り出す方法

配列名=[値1,値2,…,値n]
配列名.each_with_index{ |x,i|

print(i , " " , x , "¥n")
}

a=[1,3,5,7,9]
a.each_with_index{ |x,i|

print(i , " " , x , "¥n")
}

x に値1,値2,…値nが代入される

x に1,3,5,7,9が代入される

i=0,1,2,・・・,n-1が代入される

i=0,1,2,3,4

2004/04/19

© All Rights Reserved. A. Sakurai 2004

61

配列の要素の参照例

62

配列の要素の参照例①

a=[4,2,1,6,7]

sum = 0

a.length.times{ |i|

sum += a[i]

}

print(" sum = " , sum)

a=[4,2,1,6,7]

sum = 0
a.each{ |i|

sum += i
}
print(" sum = " , sum , "¥n")

配列の要素の合計を求める

C:¥Ruby>ruby sample.rb
sum = 20

iには0,1,2,3,4が代入 iには4,2,1,6,7が代入

63

配列の要素の参照例②

a=[4,2,1,6,7]

i = 0
sum = 0
while i < a.length do

sum += a[i]
i += 1

end
print(" sum = " , sum)

a=[4,2,1,6,7]

i = 0
sum = 0
loop{

sum += a[i]
i += 1
break if i == a.length

}
print(" sum = " , sum)

配列の要素の合計を求める

while , loop を用いても同じ動作ができます 64

配列の要素の参照例③

a=[4,2,1,6,7]

a.length.times { |i|
if i % 2 != 0 then

print(a[i] , "¥n")
end

}

a=[4,2,1,6,7]

a.each { |i|
if i % 2 != 0 then

print(i , "¥n")
end

}

C:¥Ruby>ruby sample.rb
2
6

C:¥Ruby>ruby sample.rb
1
7

どう違うでしょうか

65

配列の要素の参照例③

a=[4,2,1,6,7]

a.length.times { |i|
if i % 2 != 0 then

print(a[i] , "¥n")
end

}

a=[4,2,1,6,7]

a.each { |i|
if i % 2 != 0 then

print(i , "¥n")
end

}

どう違うでしょうか

iには0,1,2,3,4が代入される
表示されるのはa[1],a[3]

iには4,2,1,6,7が代入される
表示されるのは1,7

66

配列の要素の参照例④

x=[]

10.times{ |i|
x[i] = rand(100)

}

sum = 0
x.length.times{ |i|

sum += x[i]
}
p x
print(" sum = " , sum)

配列xを宣言

10個の乱数を生成
配列xに格納

合計値の計算

C:¥Ruby>ruby sample.rb
[26, 14, 15, 79, 64, 50, 76, 79, 33, 48]
sum = 484

2004/04/19

© All Rights Reserved. A. Sakurai 2004

67

配列の要素の参照例⑤

a=[4,2,1,6,7]

a.length.times { |i|
print(a[a.length-1-i] , "¥n")

}

a[4],a[3],a[2],a[1],a[0]
の順に出力される

配列の最後の要素から出力 a=[4,2,1,6,7]

(a.length-1).step(0,-1){ |i|
print(a[i] , "¥n")

}

step
iは4,3,2,1,0と代入される

C:¥Ruby>ruby sample.rb
7
6
1
2
4 68

配列の要素の参照例⑥

a=[4,2,1,6,7]
x=[]

a.length.times { |i|
x[i] = a[i]

}
p x

配列のコピー

配列xを宣言

x[i]にa[i]を代入

a=[4,2,1,6,7]
x=[]

a.length.times { |i|
x[i] = a[i]*a[i]

}
p x

配列xを宣言

x[i]にa[i]*a[i]を代入

C:¥Ruby>ruby sample.rb
[4, 2, 1, 6, 7]

C:¥Ruby>ruby sample.rb
[16, 4, 1, 36, 49]

69

配列の要素の参照例⑥

a=[4,2,1,6,7]
x=Array.new(a.length)

a.length.times { |i|
x[i] = a[i]

}
p x

前のページと同じです

配列xの要素数が分かっている場合

x[i]にa[i]を代入

a=[4,2,1,6,7]
x=Array.new(a.length)

a.length.times { |i|
x[i] = a[i]*a[i]

}
p x

x[i]にa[i]*a[i]を代入

70

注意: 配列の要素の参照例⑥

a=[4,2,1,6,7]
x=a
p a
p x
a[0]=10
p a
p x

「配列のコピー」 にはなりません！

配列xにコピー?

しかし、x も変っている！

配列aだけ変更

C:¥ruby>ruby sample.rb
[4, 2, 1, 6, 7]
[4, 2, 1, 6, 7]
[10, 2, 1, 6, 7]
[10, 2, 1, 6, 7]

71

注意: 配列の要素の参照例⑥

[0] [1] [2] [3] [4]

6 70004 2 1
a=[4,2,1,6,7]
x=a
p a, x

a[0]=10

p a, x

a
x

[0] [1] [2] [3] [4]

6 700010 2 1
a
x

72

配列の要素の参照例⑦

a[0] a[1] a[2] a[3] a[4]

4 2 1 6 7
a=[4,2,1,6,7]

a[a.length] = 8
p a a[0] a[1] a[2] a[3] a[4] a[5]

4 2 1 6 7 8

配列の最後の要素に値を追加

2004/04/19

© All Rights Reserved. A. Sakurai 2004

73

配列の要素の参照例⑧

a[0] a[1] a[2] a[3] a[4]

4 2 1 6 7

a[0] a[1] a[2] a[3] a[4] a[5]

4 4 2 1 6 7

a=[4,2,1,6,7]

n=a.length
n.times{ |i|

a[n-i] = a[n-i-1]
}

a[0] = 5
p a

a[0] a[1] a[2] a[3] a[4] a[5]

5 4 2 1 6 7

配列の先頭の要素に値を追加

i=0i=1i=4 i=2i=3

74

配列の要素の参照例⑨

a=[]

n=10
n.times{ |i|

a[i] = rand(10)
}

a.length.times { |i|
print(a[i] , " " , "*" * a[i] , "¥n")

}

C:¥ruby>ruby sample.rb
3 ***
3 ***
5 *****
2 **
3 ***
4 ****
2 **
1 *
7 *******
5 *****

実行結果

10個の乱数を生成

* を a[i]個出力

75

配列の要素の参照例⑩

a=[1,2,3]
b=[4,5,6]
x=[]

a.length.times{ |i|

}
p a
p b
p x

C:¥ruby>ruby sample.rb
[1, 2, 3]
[4, 5, 6]
[5, 7, 9]

二つの配列の要素の和の計算

練習問題③の回答

76

練習問題

配列に関する練習①～⑤

77

練習問題①

配列 a=[5,4,2,7,6] の要素の中で最小値，
最大値を求めるプログラムを書きなさい

78

練習問題②

三つの配列a，b, c に対して

a=[1,2,3,4,5]
b=[1,4,9,16,25]
c=[1,8,27,64,125]
というように、times を用いて、a, b, c の各

要素に値を格納するプログラムを書きなさ
い．

2004/04/19

© All Rights Reserved. A. Sakurai 2004

79

練習問題③

二つの配列 a=[4,3,6,9,1]
b=[1,9,5,2,3] をベクトルとした場合，二つ
のベクトルの和を配列 x に，二つの内積を
変数 y に求めるプログラムを書きなさい

irb(main):003:0> a=[4,3,6,9,1]
=> [4, 3, 6, 9, 1]
irb(main):004:0> b=[1,9,5,2,3]
=> [1, 9, 5, 2, 3]
irb(main):005:0> a+b
=> [4, 3, 6, 9, 1, 1, 9, 5, 2, 3]

「＋」演算子は二つ
の配列を結合

参考ですが…

80

練習問題④

キーボードから整数を入力し，順番に配列
xに格納し，その結果を出力するプログラ
ムを書きなさい．（キーボードからの入力は
qを入力することで終了とする）

81

練習問題⑤

配列x=[3,4,9,6,2]の要素をtimesメソッドを用い
て，逆順に並び変えるプログラムを作成しなさい

配列xの要素を直接入れ換えること

irb(main):001:0> x=[3,5,6,7]
=> [3, 5, 6, 7]
irb(main):002:0> x.reverse
=> [7, 6, 5, 3]

reverse というのがありますが使ってはいけません

82

補足: 入れ替え

変数値の入替え

変数 a と変数 b に入っている値を入替えたい。
どうすればいいか？

当然、 a=b; b=a ではだめです。どうして？

irb(main):007:0> a=1; b=10; puts("a=#{a}, b=#{b}")
a=1, b=10
=> nil
irb(main):008:0> a=b; b=a; puts("a=#{a}, b=#{b}")
a=10, b=10
=> nil

83

補足: 入れ替え その２
入替えには、作業領域があればよい

配列要素に対しても同様

irb(main):009:0> a=1; b=10; puts("a=#{a}, b=#{b}")
a=1, b=10
=> nil
irb(main):010:0> w=a; a=b; b=w; puts("a=#{a}, b=#{b}")
a=10, b=1
=> nil

irb(main):001:0> x=[3 , 5]
=> [3, 5]
irb(main):002:0> work=x[0]
=> 3
irb(main):003:0> x[0]=x[1]
=> 5
irb(main):004:0> x[1]=work
=> 3
irb(main):005:0> p x
[5, 3]
=> nil 84

練習問題

練習問題①から⑤を（できるだけ）（頑
張って）行ないなさい。

プログラムと実行結果をワープロに貼り
付けて、keio.jp から提出して下さい。

