
2004/04/19

© All Rights Reserved. A. Sakurai 2004

1

プログラミング言語 第九回

担当：篠沢 佳久
櫻井 彰人

平成23年 6月 27日

2

本日の内容

一次元配列の復習

二次元配列

多重ループ

ネスト（入れ子）構造

練習問題①～③

3

ネスト（入れ子）

ネストする: 入れ子にすること

箱根の十二卵（田中一幸氏作） 左端は実際の鶏卵のＬＬ玉ほど。右端は１３番目のヒヨコ

http://dadandmam.whitesnow.jp/sub3-011.htm
4

配列の復習

一次元配列と繰り返し

5

配列の宣言

要素が分かっている場合
配列名 = [値1, 値2, … , 値n]

要素数のみが決まっている場合
配列名 = Array.new(要素数)

要素数が決まっていない場合
配列名 = []

6

配列の宣言②

a=[4, 6, 7, 9, 10]
a

0 4

1 6

2 7

3 9

4 10

a[0]

a[1]

a[2]

a[3]

a[4]

要素が分かっている場合

2004/04/19

© All Rights Reserved. A. Sakurai 2004

7

配列の宣言②

a= []

a[0]=4
a[1]=6
a[2]=7
a[3]=9
a[4]=10

a= Array.new(5)

a[0]=4
a[1]=6
a[2]=7
a[3]=9
a[4]=10

要素数が分かっている場合 要素数が決まっていない場合

8

配列の要素の参照方法①

要素番号で要素の値を参照したい場合

a.length.times{ |i|
print(a[i] , "¥n")

}

(0..a.length-1).each{ |i|
print(a[i] , "¥n")

}

a=[1,3,5,7,9]

5.times{ |i|
print(a[i] , "¥n")

}

配列名.length
配列の要素数

C:¥Ruby>ruby sample.rb
1
3
5
7
9

9

配列の要素の参照方法②

要素を直接参照したい場合

a=[1,3,5,7,9]
a.each{ |i|

print(i , "¥n")
}

[1,3,5,7,9].each{ |i|
print(i , "¥n")

}

C:¥Ruby>ruby sample.rb
1
3
5
7
9

10

一次元配列のプログラム例

name

0 A

1 B

2 C

3 D

4 E

test

0 85

1 60

2 5

3 100

4 50

name = ["A" , "B" , "C" , "D" , "E"]
test = [85 , 60 , 5 , 100 , 50]

配列name 配列 test

文字列型 整数型

11

配列の要素への代入

name = ["A" , "B" , "C" , "D" , "E"]
test = [85 , 60 , 5, 100 , 50]

name[3] = "d"
test[3] = 90

p name
p test

C:¥Ruby>ruby sample.rb
["A", "B", "C", "d", "E"]
[85, 60, 5, 90, 50]

12

最後の要素への追加①

name = ["A" , "B" , "C" , "D" , "E"]
test = [85 , 60 , 5, 100 , 50]

name[name.length] = "F"
test[test.length] = 70

p name
p test

C:¥Ruby>ruby sample.rb
["A", "B", "C", "D", "E", "F"]
[85, 60, 5, 100, 50, 70]

2004/04/19

© All Rights Reserved. A. Sakurai 2004

13

最後の要素への追加②

name

0 A

1 B

2 C

3 D

4 E

5 F

test

0 85

1 60

2 5

3 100

4 50

5 70

配列name 配列 test

文字列型 整数型

name[name.length] = "F" test[test.length] = 70

14

平均点を求める①

name = ["A" , "B" , "C" , "D" , "E"]
test = [85 , 60 , 5, 100 , 50]

sum = 0
test.length.times{ |i|

sum += test[i]
}
print("平均点 --> " , sum / test.length)

C:¥ruby>ruby sample.rb
平均点 --> 60

times を用いた方法

15

平均点を求める②

name = ["A" , "B" , "C" , "D" , "E"]
test = [85 , 60 , 5, 100 , 50]

sum = 0
(0..test.length-1).each{ |i|

sum += test[i]
}
print("平均点 --> " , sum / test.length)

C:¥ruby>ruby sample.rb
平均点 --> 60

each を用いた方法

16

平均点を求める③

name = ["A" , "B" , "C" , "D" , "E"]
test = [85 , 60 , 5, 100 , 50]

sum = 0
test.each{ |i|

sum += i
}
print("平均点 --> " , sum / test.length)

each を用いた方法

配列の要素を直接参照

C:¥ruby>ruby sample.rb
平均点 --> 60

前頁との違いに注意して下さい

10.times{
a = 10

}
print(a , "¥n")

ローカル変数①

17

C:¥Ruby>ruby sample.rb
sample.rb:4: undefined local variable or method `a' for main:Object
(NameError)

ローカル変数
ブロック*の範囲内でしか利用
できない

*Rubyには別の意味のブロックもあります

ブロック①

test.length.times{ |i|

if average > test[i] then
print(name[i] , ": " , test[i] , "点¥n")

end

}

18

ブロック

ブロック

後半にでてくる二重ループの場合

2004/04/19

© All Rights Reserved. A. Sakurai 2004

(0..9).each{ |x|
(0..9).each{ |y|

z = x*x + y*y
print(" x = " , x , " y = " , y , ": z= " , z , "¥n")

}
}

ブロック②

ブロック

ブロック

ローカル変数②

20

a = 0
10.times{

a = 10
}
print(a , "¥n")

ローカル変数
ブロックの前で宣言しておく

C:¥Ruby>ruby sample.rb
10

グローバル変数

10.times{
$a = 10

}
print($a , "¥n")

21

C:¥Ruby>ruby sample.rb
10

グローバル変数
変数名の前に「$」をつける

プログラムのどこからでも参
照できる

22

二次元配列

二次元配列の宣言

要素の参照，代入

23

2次元配列

表が使えると、随分便利です。

スプレッドシートを思い起こしてください

スプレッドシートって何ですか？

24

二次元の配列＝二次元の表（行列）

表といえば、二次元かな。

表計算ソフトも２次元だしな。

2004/04/19

© All Rights Reserved. A. Sakurai 2004

25

二次元配列の宣言①

1 2 3

4 5 6

7 8 9

3×3の行列 a

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

Ruby での宣言
















=

987
654
321

a

表の場合

26

二次元配列の宣言②

1 2 3

4 5 6

7 8 9

3×3の行列 a

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

Ruby での宣言

「，」で区切る
さらに[]で囲む

27

二次元配列の宣言③

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

p a

C:¥Ruby>ruby sample.rb
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

一次元配列

二次元配列は一次元配列の要素を一次元配列として
いるとみなせる

28

二次元配列の宣言④

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

p a

一次元配列

二次元配列は一次元配列の要素を一次元配列として
いるとみなせる

一次元配列

29

二次元配列の要素の参照①

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

30

二次元配列の要素の参照②
a=[

[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

p a[0][0]
p a[0][1]
p a[0][2]

p a[1][0]
p a[1][1]
p a[1][2]

p a[2][0]
p a[2][1]
p a[2][2]

C:¥Ruby>ruby sample.rb
1
2
3
4
5
6
7
8
9

2004/04/19

© All Rights Reserved. A. Sakurai 2004

31

二次元配列の要素の参照③

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

a[0]

a[1]

a[2]

一次元配列

32

二次元配列の要素の参照④

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

p a[0]
p a[1]
p a[2]

C:¥Ruby>ruby sample.rb
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

a[0]

a[1]

a[2]

33

二次元配列の要素の参照⑤

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

p a.length
p a[0].length
p a[1].length
p a[2].length

C:¥Ruby>ruby sample.rb
3
3
3
3

配列a の要素数

a[0], a[1], a[2] の要素数

34

二次元配列の要素の参照⑤'
a=[

[1] ,
[4 , 5] ,
[7 , 8 , 9]

]

p a.length
p a[0].length
p a[1].length
p a[2].length

C:¥Ruby>ruby sample.rb
3
1
2
3

配列a の要素数

a[0], a[1], a[2] の要素数

35

二次元配列の要素の参照⑤''
a=[

[1] ,
[4 , 5] ,
[7 , 8 , 9]

]

p a[0][0]
p a[0][1]
p a[0][2]

p a[1][0]
p a[1][1]
p a[1][2]

p a[2][0]
p a[2][1]
p a[2][2]

C:¥Ruby>ruby sample.rb
1
nil
nil
4
5
nil
7
8
9

36

二次元配列の要素の参照⑤'''
a=[

[1 , 2 , 3 , 4] ,
[5 , 6 , 7] ,
[8 , 9] ,
[10]

]

p a.length
p a[0].length
p a[1].length
p a[2].length
p a[3].length

C:¥Ruby>ruby sample.rb
4
4
3
2
1

配列a の要素数

a[0], a[1], a[2], a[3] の要素数

2004/04/19

© All Rights Reserved. A. Sakurai 2004

37

1 2 3

4 5 6

7 8 9

二次元配列の要素の参照⑥

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

a.length

a[0]

a[1]

a[2]

a[0].length
a[1].length
a[2].length

要素数

38

二次元配列の宣言①

要素の値が分かっている場合

1 2 3

4 5 6

7 8 9

10 11 12

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9] ,
[10 , 11 , 12]

]

39

二次元配列の宣言②

要素数のみ分かっている場合

4行

3列

a = Array.new(4)

a[0] = Array.new(3)
a[1] = Array.new(3)
a[2] = Array.new(3)
a[3] = Array.new(3)

40

a = Array.new(4)

p a

要素数4の配列a を作成

二次元配列の宣言②’

a[0]

a[1]

a[2]

a[2]
C:¥Ruby>ruby sample.rb
[nil, nil, nil, nil]

値が入っていないので「nil」となる

a

41

a = Array.new(4)
a[0] = Array.new(3)

p a

二次元配列の宣言②’

a[0]

a[1]

a[2]

a[2]

配列a[0]に要素が3の配列を作成

C:¥Ruby>ruby sample.rb
[[nil, nil, nil], nil, nil, nil]

a[0] のみ3個の要素を持つ配列

42

a = Array.new(4)
a[0] = Array.new(3)
a[1] = Array.new(3)

p a

二次元配列の宣言②’

a[0]

a[1]

a[2]

a[2]

配列a[1]に要素が3の配列を作成

C:¥Ruby>ruby sample.rb
[[nil, nil, nil], [nil, nil, nil], nil, nil]

a[0] , a[1]
3個の要素を持つ配列

2004/04/19

© All Rights Reserved. A. Sakurai 2004

43

C:¥Ruby>ruby sample.rb
[[nil, nil, nil], [nil, nil, nil], [nil, nil, nil], nil]

a = Array.new(4)
a[0] = Array.new(3)
a[1] = Array.new(3)
a[2] = Array.new(3)

p a

二次元配列の宣言②’

a[0]

a[1]

a[2]

a[2]

配列a[2]に要素が3の配列を作成

a[0] , a[1] , a[2]
3個の要素を持つ配列

44

a = Array.new(4)
a[0] = Array.new(3)
a[1] = Array.new(3)
a[2] = Array.new(3)
a[3] = Array.new(3)
p a

二次元配列の宣言②’

a[0]

a[1]

a[2]

a[2]

配列a[3]に要素が3の配列を作成

C:¥Ruby>ruby sample.rb
[[nil, nil, nil], [nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

45

二次元配列の要素への代入
a = Array.new(4)

a[0] = Array.new(3)
a[1] = Array.new(3)
a[2] = Array.new(3)
a[3] = Array.new(3)

a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6

a[2][0] = 7
a[2][1] = 8
a[2][2] = 9

a[3][0] = 10
a[3][1] = 11
a[3][2] = 12

p a

C:¥Ruby>ruby sample.rb
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

46

二次元配列の宣言③
a = []

a[0] = []
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3

a[1] = []
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6

a[2] = []
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9

a[3] = []
a[3][0] = 10
a[3][1] = 11
a[3][2] = 12

p a

C:¥Ruby>ruby sample.rb
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

a[0], a[1], a[2]
, a[3]が配列である
ことを宣言

aは配列と宣言

47

a =[]

p a

配列a を作成

二次元配列の宣言③’

C:¥Ruby>ruby sample.rb
[]

a =[]
a[0]=[]

p a

C:¥Ruby>ruby sample.rb
[[]]

配列a[0] を作成

48

二次元配列の宣言③''

C:¥Ruby>ruby sample.rb
[[1, 2, 3]]

a=[]
a[0] = []
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3

p a

C:¥Ruby>ruby sample.rb
[[1, 2, 3], []]

a=[]
a[0] = []
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3

a[1] =[]

p a

2004/04/19

© All Rights Reserved. A. Sakurai 2004

49

二次元配列の宣言③'''
a = []

a[0] = []
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3

a[1] = []
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6

p a

C:¥Ruby>ruby sample.rb
[[1, 2, 3], [4, 5, 6]]

50

二次元配列の宣言③''''
a = []

a[0] = []
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3

a[1] = []
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6

a[2] = []
p a

a[2][0] = 7
a[2][1] = 8
a[2][2] = 9

p a

C:¥Ruby>ruby sample.rb
[[1, 2, 3], [4, 5, 6], []]
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

51

二次元配列の宣言④

a = []

a[0][0] = 1
a[0][1] = 2
a[0][2] = 3

a[1][0] = 4
a[1][1] = 5
a[1][2] = 6

a[2][0] = 7
a[2][1] = 8
a[2][2] = 9

a[3][0] = 10
a[3][1] = 11
a[3][2] = 12

p a

C:¥Ruby>ruby sample.rb
sample.rb:3: undefined method `[]=' for nil:NilClass (NoMethodError)

配列の宣言をしない場合

a[0], a[1], a[2]が配列

だと宣言していない

52

二次元配列の宣言のまとめ

要素の値が分かっている場合

要素数のみ分かっている場合

要素の値，要素数も分からない場合

53

二次元配列のまとめ①

一次元配列の一次元配列

Ruby では、子供の一次元配列の長さは異な
ってよい。 Java でも同様。Cではダメ。

irb(main):001:0> points = [[70,60,83],[43,49,76],
irb(main):002:1* [59,79,43],[67,74,83]]
=> [[70, 60, 83], [43, 49, 76], [59, 79, 43], [67, 74, 83]]

points[0] points[1] points[2] points[3]

points[1][0] points[1][1] points[1][2]

points.length は 4, points[0].length は 3

54

二次元配列のまとめ②

一次元配列の一次元配列だから
irb(main):001:0> points = [[1, 70, 60, 83], [2, 43, 49, 76], [3, 59, 79,
43], [4, 67, 74, 83]]
=> [[1, 70, 60, 83], [2, 43, 49, 76], [3, 59, 79, 43], [4, 67, 74, 83]]
irb(main):002:0> points[0]
=> [1, 70, 60, 83]
irb(main):003:0> points[0][0] = 999
=> 999
irb(main):004:0> points
=> [[999, 70, 60, 83], [2, 43, 49, 76], [3, 59, 79, 43], [4, 67, 74, 83]]

irb(main):004:0> points
=> [[999, 70, 60, 83], [2, 43, 49, 76], [3, 59, 79, 43], [4, 67, 74, 83]]
irb(main):005:0> p = points[0]
=> [999, 70, 60, 83]
irb(main):006:0> p[0] = 99
=> 99
irb(main):007:0> p
=> [99, 70, 60, 83]
irb(main):008:0> points
=> [[99, 70, 60, 83], [2, 43, 49, 76], [3, 59, 79, 43], [4, 67, 74, 83]]

p と points[0] が同じものとなる

注意! p の要素を変えたら points[0] の要素が変わった！

2004/04/19

© All Rights Reserved. A. Sakurai 2004

55

二重ループ

56

一重ループ

10.times{ |x|
y = x*x
print(x , ": " , y , "¥n")

}

C:¥ruby>ruby sample.rb
0: 0
1: 1
2: 4
3: 9
4: 16
5: 25
6: 36
7: 49
8: 64
9: 81

2xy =

(0..9).each{ |x|
y = x*x
print(x , ": " , y , "¥n")

}

57

二重ループの必要性①

x = 0
(0..9).each{ |y|

z = x*x + y*y
print(x , " " , y , ": " , z , "¥n")

}

22 yxz +=
の範囲で値を求めるには？100,100 <≤<≤ yx

x=0 の時，yの値を0から9まで変えて z を求める

58

x = 1
(0..9).each{ |y|

z = x*x + y*y
print(x , " " , y , ": " , z , "¥n")

}

x = 9
(0..9).each{ |y|

z = x*x + y*y
print(x , " " , y , ": " , z , "¥n")

}

x=1 の時，yの値を0から9まで変えて z を求める

以下同様にx=9 まで同じことを繰り返し z を求める

59

二重ループの必要性②
x = 0
(0..9).each{ |y|

z = x*x + y*y
print(x , " " , y , ": " , z , "¥n")

}
x = 1
(0..9).each{ |y|

z = x*x + y*y
print(x , " " , y , ": " , z , "¥n")

}

x = 9
(0..9).each{ |y|

z = x*x + y*y
print(x , " " , y , ": " , z , "¥n")

}

xの値も0から9まで一つ
ずつ増やしていけばよい

60

二重ループ

(0..9).each{ |x|
(0..9).each{ |y|

z = x*x + y*y
print(" x = " , x , " y = " , y , ": z= " , z , "¥n")

}
}

①のループ

②のループ

①のループによって，xは0から9まで変わる

②のループによって，yは0から9まで変わる

2004/04/19

© All Rights Reserved. A. Sakurai 2004

61

二重ループの出力結果①

C:¥ruby>ruby sample.rb
x = 0 y = 0: z= 0
x = 0 y = 1: z= 1
x = 0 y = 2: z= 4
x = 0 y = 3: z= 9
x = 0 y = 4: z= 16
x = 0 y = 5: z= 25
x = 0 y = 6: z= 36
x = 0 y = 7: z= 49
x = 0 y = 8: z= 64
x = 0 y = 9: z= 81

x = 1 y = 0: z= 1
x = 1 y = 1: z= 2
x = 1 y = 2: z= 5
x = 1 y = 3: z= 10
x = 1 y = 4: z= 17
x = 1 y = 5: z= 26
x = 1 y = 6: z= 37
x = 1 y = 7: z= 50
x = 1 y = 8: z= 65
x = 1 y = 9: z= 82

①のループ中 x=0 として
②のループの処理を行なう

①のループ中 x=1 として
②のループの処理を行なう

62

二重ループの出力結果②

x = 9 y = 0: z= 81
x = 9 y = 1: z= 82
x = 9 y = 2: z= 85
x = 9 y = 3: z= 90
x = 9 y = 4: z= 97
x = 9 y = 5: z= 106
x = 9 y = 6: z= 117
x = 9 y = 7: z= 130
x = 9 y = 8: z= 145
x = 9 y = 9: z= 162

①のループ中 x=9 として
②のループの処理を行ない終了する

63

二重ループのまとめ①

y=0～9

式

x=0～9
(0..9).each{ |x|

(0..9).each{ |y|
式

}
}

10.times{ |x|
10.times{ |y|

式

}
}

eachを用いた場合 timesを用いた場合

外側と内側の制御変数は異なる名前にする
（この場合は，x と y）

64

二重ループのまとめ②

x = 0
while x < 10 do

y = 0
while y < 10 do

式

y += 1
end
x +=1

end

y=0～9

式

x=0～9

while を用いた場合

65

(0..9).each{ |x|
(0..9).each{ |y|

z = x*x + y*y
print(" x = " , x , " y = " , y , ": z= " , z , "¥n")

}
}

10.times{ |x|
10.times{ |y|

z = x*x + y*y
print(" x = " , x , " y = " , y , ": z= " , z , "¥n")

}
}

times を用いて書いた場合

66

(0..9).each{ |x|
(0..9).each{ |y|

z = x*x + y*y
print(" x = " , x , " y = " , y , ": z= " , z , "¥n")

}
}

x = 0
while x < 10 do

y= 0
while y < 10 do

z = x * x + y * y
print(" x = " , x , " y = " , y , ": z= " , z , "¥n")
y += 1

end
x += 1

end

while 文で書いた場合

2004/04/19

© All Rights Reserved. A. Sakurai 2004

67

二重ループの例

68

二重ループの例①

(1..9).each{ |x|
(1..9).each{ |y|

printf(" %d×%d=%2d" , x , y , x * y)
}
print("¥n")

}

九九の表の表示プログラム

%2d
整数を二桁で表示

69

x=1
(1..9).each{ |y|

printf(" %d×%d=%2d" , x , y , x * y)
}
print("¥n")

x=2
(1..9).each{ |y|

printf(" %d×%d=%2d" , x , y , x * y)
}
print("¥n")

x=9
(1..9).each{ |y|

printf(" %d×%d=%2d" , x , y , x * y)
}
print("¥n")

x=1,2,…9と変わっていく

70

二重ループの例①

前頁の実行画面

xを1とし，yを1から9まで変える

xを9とし，yを1から9まで変える

71

二重ループの例②

C:¥ruby>ruby sample.rb
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

(1..9).each{ |x|
(1..9).each{ |y|

if x == y then
print("1 ")

else
print("0 ")

end
}
print("¥n")

}

対角行列の表示プログラム xとyの値が同じ→"1 "
異なる場合は→"0 "

9個出力したら改行

C:¥ruby>ruby sample.rb
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

72

二重ループの例②の出力結果

x=7の時

x=9の時

x=8の時

x=1 の時

x=2 の時

x=4 の時

x=3 の時

x=6 の時

x=5 の時

2004/04/19

© All Rights Reserved. A. Sakurai 2004

73

二重ループの例②の出力結果
C:¥ruby>ruby sample.rb
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

x=y=1の場合

x=y=2の場合

x=y=6の場合

x=y=3の場合

x=y=4の場合

x=y=7の場合

x=y=8の場合

x=y=5の場合

x=y=9の場合

74

二重ループの例③

(1..9).each{ |x|
(1..9).each{ |y|

if x == (10-y) then
print("1 ")

else
print("0 ")

end
}
print("¥n")

}

C:¥ruby>ruby sample.rb
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

xと(10-y)の値が同じ→"1 "
異なる場合は→"0 "

75

二重ループの例③の出力結果

C:¥ruby>ruby sample.rb
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

x=1 の時

x=2 の時

x=4 の時

x=3 の時

x=6 の時

x=7の時

x=9の時

x=8の時

x=5 の時

76

C:¥ruby>ruby sample.rb
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

二重ループの例③の出力結果

x=1,y=9

x=2,y=8

x=4,y=6

x=3,y=7

x=6,y=4

x=7,y=3

x=9,y=1

x=8,y=2

x=5,y=5

77

二重ループの例③'

(1..9).each{ |x|
(1..9).each{ |y|

if x == y or x == (10-y) then
print("1 ")

else
print("0 ")

end
}
print("¥n")

}

C:¥ruby>ruby sample.rb
1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1

xとyの値が同じ，もしくはxと
(10-y)の値が同じ→"1 "
異なる場合は→"0 "

78

二重ループの例④

(1..9).each { |i|
(1..i).each { |j|

print(j)
}
print ("¥n")

}

C:¥ruby>ruby sample.rb
1
12
123
1234
12345
123456
1234567
12345678
123456789

j は 1から i まで変わる

2004/04/19

© All Rights Reserved. A. Sakurai 2004

79

二重ループの例④の出力結果

C:¥ruby>ruby sample.rb
1
12
123
1234
12345
123456
1234567
12345678
123456789

i=1の時，j=1

i=2の時，j=1～2

i=3の時，j=1～3

i=9の時，j=1～9

i=8の時，j=1～8

80

二重ループの例⑤

(1..9).each { |i|
(1..(10-i)).each{ |j|

print(j)
}
print ("¥n")

}

C:¥ruby>ruby sample.rb
123456789
12345678
1234567
123456
12345
1234
123
12
1

j は 1から 10-i まで変わる

81

二重ループの例⑤の出力結果

i=1の時，j=1～9

i=2の時，j=1～8

i=3の時，j=1～7

i=9の時，j=1

i=8の時，j=1～2

C:¥ruby>ruby sample.rb
123456789
12345678
1234567
123456
12345
1234
123
12
1

82

11.times { |i|
d = Math.sqrt(100 - i*i).to_i
(1..d).each{

print(" ")
}
((d+1)..10).each{

print("*")
}
print("¥n")

}

二重ループの例⑥
d回は" "（空白）を表示

10-d回は"*"を表示

83

11.times { |i|
d = Math.sqrt(100 - i*i).to_i
print(d , "¥n")

}

C:¥ruby>ruby sample.rb
10
9
9
9
9
8
8
7
6
4
0

二重ループの例⑥

d の値はどう変わっていってい

るでしょうか

84

二重ループの例⑥の出力結果

dの値

10個 " " , 0個 "*"

9個 " " , 1個 "*"

8個 " " , 2個 "*"

7個 " " , 3個 "*"

6個 " " , 4個 "*"

4個 " " , 6個 "*"

0個 " " , 10個 "*"

10
9
9
9
9
8
8
7
6
4
0

d回" "，10-d回"*"を表示

2004/04/19

© All Rights Reserved. A. Sakurai 2004

85

二重ループの例⑦
（どうしてこのような出力になるのでしょうか）

11.times { |i|
d = Math.sqrt(400 - 4*i*i).to_i
(1..d).each{
print(" ")

}
((d+1)..20).each{
print("*")

}
print("¥n")

}

d回は" "（空白）を表示

20-d回は"*"を表示
86

二重ループの例⑦
（ヒント：dの値はどう変わっていくでしょうか）

11.times { |i|
d = Math.sqrt(400 - 4*i*i).to_i
print(d , "¥n")

}
C:¥ruby>ruby sample.rb
20
19
19
19
18
17
16
14
12
8
0

87

練習問題

練習問題①～③

88

練習問題①

x, y ともに0から10までの整数とする．この
場合，

① xとyの和が10となる組み合わせ

② x2とy2の和が100となる組み合わせ

を二重ループを用いて、それぞれ求めなさい

89

練習問題②

下記のプログラムにおいて，配列aには1
から100の乱数が格納されます．

j=1～8において，(a[j-1]+a[j]+a[j+1])/3
を求めなさい（移動平均）

a = []
10.times{ |i|

a[i] = rand(100)+1
print(a[i] , " ")

}
print("¥n")

C:¥Ruby>ruby sample.rb
21 91 34 17 61 22 7 86 93 93
21 91 34 -> 48
91 34 17 -> 47
34 17 61 -> 37
17 61 22 -> 33
61 22 7 -> 30
22 7 86 -> 38
7 86 93 -> 62
86 93 93 > 90

練習問題③

90

a=[
[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9]

]

b=[
[9 , 8 , 7] ,
[6 , 5 , 4] ,
[3 , 2 , 1]

]

二次元配列 a, b の和と差を印字するプログラムを
二重ループを用いて書きなさい

C:¥Ruby>ruby sample.rb
10 10 10
10 10 10
10 10 10

-8 -6 -4
-2 0 2
4 6 8

2004/04/19

© All Rights Reserved. A. Sakurai 2004

91

練習問題

練習問題①から③を（できるだけ）（頑
張って）行ないなさい。

プログラムと実行結果をワープロに貼り
付けて、keio.jp から提出して下さい。

